12 research outputs found

    The impacts of El Nino on Philippine fisheries

    Get PDF
    The El Nino phenomenon is an "anomalous climatic condition in the tropical Pacific region which occurs every two to seven years and affects the global climate". There is a greater increase in the water surface temperature of the eastern tropical and central tropical Pacific during an El Nino episode relative to that of the western tropical Pacific. The phenomenon causes fluctuations in rainfall, resulting in drought in some areas and heavy rainfall in others. During the El Nino of 1990-1992, the damage caused by the drought in the Philippines was estimated to be P4.1 billion (PhP24 = US$1). While the damage to agriculture is well documented, the impact on fisheries has not been considered. The impacts of the El Nino episode of 1997-1998 were assessed in the Philippines by the filed personnel of the Department of Agriculture and representatives of the private sector in the 15 regions of the country. Data on the losses caused by the phenomenon were obtained from interviews, surveys and reports of local government units and provincial agricultural offices for the period October 1997-June 1998. The effects of El Nino on aquaculture, marine fisheries and inland fisheries were determined

    Ecology of Phototrophic Sulfur Bacteria

    No full text

    Controlled Synthesis of Polymers Using the Iniferter Technique: Developments in Living Radical Polymerization

    No full text

    All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems

    No full text
    International audienceRapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most sensitive frequency band of the LIGO detectors, 50–300 Hz. Binary orbital parameters are split into four regions, comprising orbital periods of three to 45 days and projected semimajor axes of two to 40 light seconds. No detections are reported. We estimate the sensitivity of the search using simulated continuous wave signals, achieving the most sensitive results to date across the analyzed parameter space

    Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo’s Third Observing Run

    No full text
    International audienceWe search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; (2) how the interpretation of individual high-mass events would change if they were found to be lensed; (3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and (4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses
    corecore