12 research outputs found
Micromechanical investigation of the influence of defects in high cycle fatigue
This study aims to analyse the influence of geometrical defects (notches and holes) on the high cycle fatigue behaviour of an electrolytic copper based on finite element simulations of 2D polycrystalline aggregates. In order to investigate the role of each source of anisotropy on the mechanical response at the grain scale, three different material constitutive models are assigned successively to the grains: isotropic elasticity, cubic elasticity and crystal plasticity in addition to the cubic elasticity. The significant influence of the elastic anisotropy on the mechanical response of the grains is highlighted. When considering smooth microstructures, the crystal plasticity have has a slight effect in comparison with the cubic elasticity influence. However, in the case of notched microstructures, it has been shown that the influence of the plasticity is no more negligible. Finally, the predictions of three fatigue criteria are analysed. Their ability to predict the defect size effect on the fatigue strength is evaluated thanks to a comparison with experimental data from the literature
Effect of defect size and shape on the high-cycle fatigue behavior
This study aims to examine the effects of both material microstructure and voids on the high-cycle fatigue behavior of metals. To deal with this matter, finite element analyses of polycrystalline aggregates are carried out, for different configurations of crystalline orientations, in order to estimate the mechanical state, at the grain scale, in the vicinity of a small elliptical hole. Fatigue criteria are then applied to estimate the average fatigue limit in fully reversed tension, for different defect sizes and ellipse aspect ratios.The constitutive models and the fatigue criteria are calibrated using experimental data obtained from specimens made of 316L austenitic steel. The estimations are then compared with the experimental trends
Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue
The present paper introduces a methodology for the high-cycle fatigue design of balloon-expandable stents. The proposed approach is based on a micromechanical model coupled with a probabilistic methodology for the failure prediction of stents. This allows to account for material heterogeneity and scatter, to introduce a fatigue criterion able to consider stress gradients, and to perform a probabilistic analysis to obtain general predictions from a limited number of realizations of microstructures investigated. Numerical simulations have allowed to highlight the noteworthy characteristics of the mechanical response in the stent as well as the heterogeneity of the mechanical fields due to stress concentrations in the unit cell geometry and to strain incompatibilities between the grains induced by the anisotropy of their mechanical behavior. The predicted survival probability of the stent is in accordance with the experimental data from the literature. Moreover, the influence of the amplitude of the arterial pressure on the fatigue strength of the stent has been evaluated.This work is funded by the French National Research Agency (Project Fast3D-ANR-11-BS09-012-01) and by the Fondazione Cariplo(Grant 2013-1779). The authors would like to acknowledge Dr. Michele Conti for his useful advice and for providing the three- dimensional stent mesh used in the present work
Influence of defects and loading paths on the high cycle fatigue behavior of an austenitic stainless steel 316L
L'objectif de ces travaux de thèse est d'étudier l'influence de la microstructure et de défauts géométriques sur le comportement en fatigue à grand nombre de cycles (FGNC) d'un acier inoxydable austénitique 316L. La méthodologie proposée s'appuie sur des simulations par éléments finis (EF) d'agrégats polycristallins qui permettent de décrire les champs mécaniques à l'échelle des mécanismes impliqués dans les processus d'amorçage de fissures de fatigue.Une étude numérique préliminaire, s'appuyant sur des données expérimentales issues de la littérature, est conduite sur un cuivre électrolytique à l'aide de simulations numériques d'agrégats polycristallins en 2D. L'effet du trajet de chargement et de défauts artificiels de taille proche ou légèrement supérieure à celle de la microstructure sur les réponses mécaniques mésoscopiques sont analysés. Les capacités de prédiction de quelques critères de fatigue, s'appuyant sur des quantités mécaniques mésoscopiques, sont évaluées. Il est mis en évidence que les limites de fatigue macroscopiques prédites par un critère de fatigue probabiliste sont en accord avec les tendances expérimentales observées en fatigue multiaxiale et en présence de défauts.Une campagne expérimentale a été menée sur un acier austénitique 316L. Des essais de fatigue oligocyclique sont conduits afin de caractériser le comportement élasto-plastique du matériau. Des essais de FGNC, utilisant des éprouvettes avec et sans défaut de surface (défaut artificiel hémisphérique) ont été effectués pour estimer les limites de fatigue dans différentes conditions de sollicitation (traction, torsion, traction et torsion combinée, traction biaxiale) et pour plusieurs rayons de défaut. Dans le but de compléter la caractérisation du matériau, la microstructure est étudiée à l'aide d'analyses EBSD et la texture cristallographique est mesurée par diffraction des rayons X. Ces résultats expérimentaux sont utilisés pour reproduire, avec des simulations EF, les essais de FGNC sur des microstructures 2D et 3D représentatives de l'acier austénitique. L'hétérogénéité de quantités mécaniques mésoscopiques pertinentes en fatigue est discutée avec une attention particulière sur l'effet des défauts. L'approche probabiliste est appliquée aux résultats des modèles EF pour quantifier l'effet de la taille du défaut, pour différents trajets de chargement. La pertinence, vis-à -vis des observations expérimentales, des distributions de la limite de fatigue prédites est évaluée.The aim of this study is to analyze the influence of both the microstructure and defects on the high cycle fatigue (HCF) behaviour of a 316L austenitic stainless steel thanks to finite element (FE) simulations of polycrystalline aggregates.%The scatter encountered in the HCF behavior of metallic materials is often explained by the anisotropic elasto-plastic behavior of individual grains leading to a highly heterogeneous distribution of plastic slip.Since fatigue crack initiation is a local phenomenon, intimately related to the plastic activity at the crystal scale, it seems relevant to rely on this kind of modeling to evaluate the mechanical quantities.A preliminary numerical study, based on experimental data drawn from the litterature, was conducted on an electrolytic copper using simulations of 2D polycrystalline aggregates. The effect of the loading path and small artificial defects on the mesoscopic mechanical responses have been analyzed separately. Moreover, the predictive capabilities of some fatigue criteria, relying on the mesoscopic mechanical responses, has been evaluated. It was shown that the macroscopic fatigue limits predicted by a probabilistic fatigue criterion are in accordance with the experimental trends observed in multiaxial fatigue or in the presence of small defects.An experimental campaign is undertaken on an austenitic steel 316L. Low cycle fatigue tests are conducted in order to characterize the elasto-plastic behavior of the material. Load-controled HCF tests, using both smooth specimens and specimens containing an artificial hemispherical surface defect, are carried out to estimate the fatigue limits under various loading conditions (tension, torsion, combined tension and torsion, biaxial tension) and several defect radii. To complete the characterization of the material, the microstructure is studied thanks to EBSD analyzes and the cristallographic texture is measured by X-ray diffraction. These experimental data are used to reproduce, with FE simulations, the HCF tests on 2D and 3D microstructures representative of the austenitic steel. The heterogeneity of the mesoscopic mechanical quantities relevant in fatigue are discussed in relation to the modeling. The results from the FE models are then used along with the probabilistic mesomechanics approach to quantify the defect size effect for several loading paths. The relevance, with respect to the experimental observations, of the predicted fatigue strength distributions is assessed
Influence of defects and loading paths on the high cycle fatigue behavior of an austenitic stainless steel 316L
L'objectif de ces travaux de thèse est d'étudier l'influence de la microstructure et de défauts géométriques sur le comportement en fatigue à grand nombre de cycles (FGNC) d'un acier inoxydable austénitique 316L. La méthodologie proposée s'appuie sur des simulations par éléments finis (EF) d'agrégats polycristallins qui permettent de décrire les champs mécaniques à l'échelle des mécanismes impliqués dans les processus d'amorçage de fissures de fatigue.Une étude numérique préliminaire, s'appuyant sur des données expérimentales issues de la littérature, est conduite sur un cuivre électrolytique à l'aide de simulations numériques d'agrégats polycristallins en 2D. L'effet du trajet de chargement et de défauts artificiels de taille proche ou légèrement supérieure à celle de la microstructure sur les réponses mécaniques mésoscopiques sont analysés. Les capacités de prédiction de quelques critères de fatigue, s'appuyant sur des quantités mécaniques mésoscopiques, sont évaluées. Il est mis en évidence que les limites de fatigue macroscopiques prédites par un critère de fatigue probabiliste sont en accord avec les tendances expérimentales observées en fatigue multiaxiale et en présence de défauts.Une campagne expérimentale a été menée sur un acier austénitique 316L. Des essais de fatigue oligocyclique sont conduits afin de caractériser le comportement élasto-plastique du matériau. Des essais de FGNC, utilisant des éprouvettes avec et sans défaut de surface (défaut artificiel hémisphérique) ont été effectués pour estimer les limites de fatigue dans différentes conditions de sollicitation (traction, torsion, traction et torsion combinée, traction biaxiale) et pour plusieurs rayons de défaut. Dans le but de compléter la caractérisation du matériau, la microstructure est étudiée à l'aide d'analyses EBSD et la texture cristallographique est mesurée par diffraction des rayons X. Ces résultats expérimentaux sont utilisés pour reproduire, avec des simulations EF, les essais de FGNC sur des microstructures 2D et 3D représentatives de l'acier austénitique. L'hétérogénéité de quantités mécaniques mésoscopiques pertinentes en fatigue est discutée avec une attention particulière sur l'effet des défauts. L'approche probabiliste est appliquée aux résultats des modèles EF pour quantifier l'effet de la taille du défaut, pour différents trajets de chargement. La pertinence, vis-à -vis des observations expérimentales, des distributions de la limite de fatigue prédites est évaluée.The aim of this study is to analyze the influence of both the microstructure and defects on the high cycle fatigue (HCF) behaviour of a 316L austenitic stainless steel thanks to finite element (FE) simulations of polycrystalline aggregates.%The scatter encountered in the HCF behavior of metallic materials is often explained by the anisotropic elasto-plastic behavior of individual grains leading to a highly heterogeneous distribution of plastic slip.Since fatigue crack initiation is a local phenomenon, intimately related to the plastic activity at the crystal scale, it seems relevant to rely on this kind of modeling to evaluate the mechanical quantities.A preliminary numerical study, based on experimental data drawn from the litterature, was conducted on an electrolytic copper using simulations of 2D polycrystalline aggregates. The effect of the loading path and small artificial defects on the mesoscopic mechanical responses have been analyzed separately. Moreover, the predictive capabilities of some fatigue criteria, relying on the mesoscopic mechanical responses, has been evaluated. It was shown that the macroscopic fatigue limits predicted by a probabilistic fatigue criterion are in accordance with the experimental trends observed in multiaxial fatigue or in the presence of small defects.An experimental campaign is undertaken on an austenitic steel 316L. Low cycle fatigue tests are conducted in order to characterize the elasto-plastic behavior of the material. Load-controled HCF tests, using both smooth specimens and specimens containing an artificial hemispherical surface defect, are carried out to estimate the fatigue limits under various loading conditions (tension, torsion, combined tension and torsion, biaxial tension) and several defect radii. To complete the characterization of the material, the microstructure is studied thanks to EBSD analyzes and the cristallographic texture is measured by X-ray diffraction. These experimental data are used to reproduce, with FE simulations, the HCF tests on 2D and 3D microstructures representative of the austenitic steel. The heterogeneity of the mesoscopic mechanical quantities relevant in fatigue are discussed in relation to the modeling. The results from the FE models are then used along with the probabilistic mesomechanics approach to quantify the defect size effect for several loading paths. The relevance, with respect to the experimental observations, of the predicted fatigue strength distributions is assessed
Influence d'accidents géométriques et du mode de chargement sur le comportement en fatigue à grand nombre de cycles d'un acier inoxydable austénitique 316L
The aim of this study is to analyze the influence of both the microstructure and defects on the high cycle fatigue (HCF) behaviour of a 316L austenitic stainless steel thanks to finite element (FE) simulations of polycrystalline aggregates.%The scatter encountered in the HCF behavior of metallic materials is often explained by the anisotropic elasto-plastic behavior of individual grains leading to a highly heterogeneous distribution of plastic slip.Since fatigue crack initiation is a local phenomenon, intimately related to the plastic activity at the crystal scale, it seems relevant to rely on this kind of modeling to evaluate the mechanical quantities.A preliminary numerical study, based on experimental data drawn from the litterature, was conducted on an electrolytic copper using simulations of 2D polycrystalline aggregates. The effect of the loading path and small artificial defects on the mesoscopic mechanical responses have been analyzed separately. Moreover, the predictive capabilities of some fatigue criteria, relying on the mesoscopic mechanical responses, has been evaluated. It was shown that the macroscopic fatigue limits predicted by a probabilistic fatigue criterion are in accordance with the experimental trends observed in multiaxial fatigue or in the presence of small defects.An experimental campaign is undertaken on an austenitic steel 316L. Low cycle fatigue tests are conducted in order to characterize the elasto-plastic behavior of the material. Load-controled HCF tests, using both smooth specimens and specimens containing an artificial hemispherical surface defect, are carried out to estimate the fatigue limits under various loading conditions (tension, torsion, combined tension and torsion, biaxial tension) and several defect radii. To complete the characterization of the material, the microstructure is studied thanks to EBSD analyzes and the cristallographic texture is measured by X-ray diffraction. These experimental data are used to reproduce, with FE simulations, the HCF tests on 2D and 3D microstructures representative of the austenitic steel. The heterogeneity of the mesoscopic mechanical quantities relevant in fatigue are discussed in relation to the modeling. The results from the FE models are then used along with the probabilistic mesomechanics approach to quantify the defect size effect for several loading paths. The relevance, with respect to the experimental observations, of the predicted fatigue strength distributions is assessed.L'objectif de ces travaux de thèse est d'étudier l'influence de la microstructure et de défauts géométriques sur le comportement en fatigue à grand nombre de cycles (FGNC) d'un acier inoxydable austénitique 316L. La méthodologie proposée s'appuie sur des simulations par éléments finis (EF) d'agrégats polycristallins qui permettent de décrire les champs mécaniques à l'échelle des mécanismes impliqués dans les processus d'amorçage de fissures de fatigue.Une étude numérique préliminaire, s'appuyant sur des données expérimentales issues de la littérature, est conduite sur un cuivre électrolytique à l'aide de simulations numériques d'agrégats polycristallins en 2D. L'effet du trajet de chargement et de défauts artificiels de taille proche ou légèrement supérieure à celle de la microstructure sur les réponses mécaniques mésoscopiques sont analysés. Les capacités de prédiction de quelques critères de fatigue, s'appuyant sur des quantités mécaniques mésoscopiques, sont évaluées. Il est mis en évidence que les limites de fatigue macroscopiques prédites par un critère de fatigue probabiliste sont en accord avec les tendances expérimentales observées en fatigue multiaxiale et en présence de défauts.Une campagne expérimentale a été menée sur un acier austénitique 316L. Des essais de fatigue oligocyclique sont conduits afin de caractériser le comportement élasto-plastique du matériau. Des essais de FGNC, utilisant des éprouvettes avec et sans défaut de surface (défaut artificiel hémisphérique) ont été effectués pour estimer les limites de fatigue dans différentes conditions de sollicitation (traction, torsion, traction et torsion combinée, traction biaxiale) et pour plusieurs rayons de défaut. Dans le but de compléter la caractérisation du matériau, la microstructure est étudiée à l'aide d'analyses EBSD et la texture cristallographique est mesurée par diffraction des rayons X. Ces résultats expérimentaux sont utilisés pour reproduire, avec des simulations EF, les essais de FGNC sur des microstructures 2D et 3D représentatives de l'acier austénitique. L'hétérogénéité de quantités mécaniques mésoscopiques pertinentes en fatigue est discutée avec une attention particulière sur l'effet des défauts. L'approche probabiliste est appliquée aux résultats des modèles EF pour quantifier l'effet de la taille du défaut, pour différents trajets de chargement. La pertinence, vis-à -vis des observations expérimentales, des distributions de la limite de fatigue prédites est évaluée
Étude micromécanique de l’influence de défauts sur la tenue en fatigue à grand nombre de cycles
The aim of this study is to analyse the influence of micro-notches on the fatigue behaviour of an electrolytic copper using finite element simulations of polycrystalline aggregates. In these simulations, in which the grains are explicitly modelled, the anisotropic behavior of each FCC crystal is described by the generalized Hooke’s law with a cubic elasticity tensor and by a single crystal visco-plastic model. The numerical analysis is done using several smooth and notched microstructures. The cyclic mechanical responses of the grains are then studied for different defect sizes and the ability of three fatigue criteria to predict the defect size effect on the fatigue strength is evaluated thanks to the comparison with experimental data
The role of the microstructure and defects on crack initiation in 316L stainless steel under multiaxial high cycle fatigue
The aim of this study is to analyse the influence of both the microstructure and defects on the high cycle fatigue behaviour of the 316L austenitic stainless steel, using finite element simulations of polycrystalline aggregates. High cycle fatigue tests have been conducted on this steel under uniaxial (push-pull) and multiaxial (combined in-phase tension and torsion) loading conditions, with both smooth specimens and specimens containing artificial semi-spherical surface defects. 2D numerical models, using a cubic elastic constitutive model, are created to determine the degree of heterogeneity of the local stress parameters as a function of the defect size. This has been done for one microstructure using several orientation sets generated from the initial texture of the material. The grains are explicitly modelled and the anisotropic behaviour of each FCC crystal is described by the generalized Hooke’s law with a cubic elasticity tensor. From the simulations carried out with different defect sizes and orientation sets that are representative of the real texture of the tested material, statistical information regarding mesoscopic mechanical fields provides useful insight into the microstructural dependence of the driving forces for fatigue crack nucleation at the mesoscopic scale (or the scale of individual grains). The results in terms of the stress fields and fatigue crack initiation conditions are determined at both the mesoscopic and macroscopic scales. The results from these FE models are used along with an original probabilistic mesomechanics approach to quantify the defect size effect. The resulting predictions, which are sensitive to the microstructure, include the probability distribution of the high cycle fatigue strength.The aim of this study is to analyse the influence of both the microstructure and defects on the high cycle fatigue behaviour of the 316L austenitic stainless steel, using finite element simulations of polycrystalline aggregates. High cycle fatigue tests have been conducted on this steel under uniaxial (push-pull) and multiaxial (combined in-phase tension and torsion) loading conditions, with both smooth specimens and specimens containing artificial semi-spherical surface defects. 2D numerical models, using a cubic elastic constitutive model, are created to determine the degree of heterogeneity of the local stress parameters as a function of the defect size. This has been done for one microstructure using several orientation sets generated from the initial texture of the material. The grains are explicitly modelled and the anisotropic behaviour of each FCC crystal is described by the generalized Hooke’s law with a cubic elasticity tensor. From the simulations carried out with different defect sizes and orientation sets that are representative of the real texture of the tested material, statistical information regarding mesoscopic mechanical fields provides useful insight into the microstructural dependence of the driving forces for fatigue crack nucleation at the mesoscopic scale (or the scale of individual grains). The results in terms of the stress fields and fatigue crack initiation conditions are determined at both the mesoscopic and macroscopic scales. The results from these FE models are used along with an original probabilistic mesomechanics approach to quantify the defect size effect. The resulting predictions, which are sensitive to the microstructure, include the probability distribution of the high cycle fatigue strength
Microstructure-dependent predictions of the effect of defect size and shape on the high-cycle fatigue strength
This study aims to investigate the effects of both the microstructure and void on the high-cycle fatigue behavior of metallic materials. To deal with this matter, finite element analyses of polycrystalline aggregates are carried out, for different configurations of crystalline orientations, in order to estimate the mechanical state, at the grain scale, in the vicinity of a small elliptical hole. Fatigue criteria are then applied to predict the average fatigue limit in fully reversed tension, for different defect sizes and ellipse aspect ratios. The constitutive models and the fatigue criteria are calibrated using experimental data obtained from specimens made of 316L austenitic steel . The predictions are then confronted to experimental trends
Competition between microstructure and defect in multiaxial high cycle fatigue
This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion) on the experimental and predicted fatigue strength of a 316 stainless steel containing artificial defect