362 research outputs found

    The purpose of peer review in the case of an open-access publication

    Get PDF
    First scientific journals were simply a way of informing colleagues about new research findings. In due course, they started filtering out unreasonable claims, and introduced a peer-review system. The purpose of peer reviewing changed with time. Since the middle of the past century, commercial publishers have owned a large number of scientific journals and as a result, the marketable value of a submitted manuscript has become an increasingly important factor in publishing decisions. Recently some publishers have developed business schemes which may stop this tendency. In the case of an open-access publication, the marketable value of a manuscript is not the primary consideration, since access to the research is not being sold. This innovation challenges scientists to re-consider the purpose of peer review. This editorial indicates some of the commonly used criteria for publication that consequently should receive less or little emphasis under the open-access model

    Transition Voltage Spectroscopy and the Nature of Vacuum Tunneling

    Full text link
    Transition Voltage Spectroscopy (TVS) has been proposed as a tool to analyze charge transport through molecular junctions. We extend TVS to Au-vacuum-Au junctions and study the distance dependence of the transition voltage V_t(d) for clean electrodes in cryogenic vacuum. On the one hand, this allows us to provide an important reference for V_t(d)-measurements on molecular junctions. On the other hand, we show that TVS forms a simple and powerful test for vacuum tunneling models

    The STAR Silicon Strip Detector (SSD)

    Full text link
    The STAR Silicon Strip Detector (SSD) completes the three layers of the Silicon Vertex Tracker (SVT) to make an inner tracking system located inside the Time Projection Chamber (TPC). This additional fourth layer provides two dimensional hit position and energy loss measurements for charged particles, improving the extrapolation of TPC tracks through SVT hits. To match the high multiplicity of central Au+Au collisions at RHIC the double sided silicon strip technology was chosen which makes the SSD a half million channels detector. Dedicated electronics have been designed for both readout and control. Also a novel technique of bonding, the Tape Automated Bonding (TAB), was used to fullfill the large number of bounds to be done. All aspects of the SSD are shortly described here and test performances of produced detection modules as well as simulated results on hit reconstruction are given.Comment: 11 pages, 8 figures, 1 tabl

    Establishing the role and impact of academic librarians in supporting open research: a case study at Leeds Beckett University, UK

    Get PDF
    This practical paper presents findings of a small scale study undertaken at a large UK University. The purpose of the study was to encourage academic engagement with Open Access (OA) and the Higher Education Funding Council for England (HEFCE) mandate with the measurable impact being increased engagement with the Repository and dissemination of research whilst circulating information to the wider community. In order to promote research, a series of ‘Focus on’ webpages were created aligned to a particular theme, and were then disseminated via social media. It was anticipated that by potentially increasing access to research outputs, academic staff would be motivated to make their work available following OA models and use the institutional repository (IR) as a means to achieve this. The main drivers for the study were the Finch Report (2012), the HEFCE Policy for open access in the post-2014 Research Excellence Framework (2014) and the institutional strategy for research. Data was collected through a statistical analysis of both the ‘Focus on’ pages and journal article downloads via the IR, with results indicating increased engagement with the IR making research openly accessible

    A Molecular Platinum Cluster Junction: A Single-Molecule Switch

    Full text link
    We present a theoretical study of the electronic transport through single-molecule junctions incorporating a Pt6 metal cluster bound within an organic framework. We show that the insertion of this molecule between a pair of electrodes leads to a fully atomically engineered nano-metallic device with high conductance at the Fermi level and two sequential high on/off switching states. The origin of this property can be traced back to the existence of a HOMO which consists of two degenerate and asymmetric orbitals, lying close in energy to the Fermi level of the metallic leads. Their degeneracy is broken when the molecule is contacted to the leads, giving rise to two resonances which become pinned close to the Fermi level and display destructive interference.Comment: 4 pages, 4 figures. Reprinted (adapted) with permission from J. Am. Chem. Soc., 2013, 135 (6), 2052. Copyright 2013 American Chemical Societ

    MCMC implementation for Bayesian hidden semi-Markov models with illustrative applications

    Get PDF
    Copyright © Springer 2013. The final publication is available at Springer via http://dx.doi.org/10.1007/s11222-013-9399-zHidden Markov models (HMMs) are flexible, well established models useful in a diverse range of applications. However, one potential limitation of such models lies in their inability to explicitly structure the holding times of each hidden state. Hidden semi-Markov models (HSMMs) are more useful in the latter respect as they incorporate additional temporal structure by explicit modelling of the holding times. However, HSMMs have generally received less attention in the literature, mainly due to their intensive computational requirements. Here a Bayesian implementation of HSMMs is presented. Recursive algorithms are proposed in conjunction with Metropolis-Hastings in such a way as to avoid sampling from the distribution of the hidden state sequence in the MCMC sampler. This provides a computationally tractable estimation framework for HSMMs avoiding the limitations associated with the conventional EM algorithm regarding model flexibility. Performance of the proposed implementation is demonstrated through simulation experiments as well as an illustrative application relating to recurrent failures in a network of underground water pipes where random effects are also included into the HSMM to allow for pipe heterogeneity

    Production test of microstrip detector and electronic frontend modules for the STAR and ALICE trackers

    Get PDF
    We revisit Shin et al.’s leakage-resilient password-based authenticated key establishment protocol (LR-AKEP) and the security model used to prove the security of LR-AKEP. By refining the Leak oracle in the security model, we show that LR-AKE (1) can, in fact, achieve a stronger notion of leakage-resilience than initially claimed and (2) also achieve an additional feature of traceability, not previously mentioned

    Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model

    Full text link
    In this work we investigate the electronic transport along model DNA molecules using an effective tight-binding approach that includes the backbone on site energies. The localization length and participation number are examined as a function of system size, energy dependence, and the contact coupling between the leads and the DNA molecule. On one hand, the transition from an diffusive regime to a localized regime for short systems is identified, suggesting the necessity of a further length scale revealing the system borders sensibility. On the other hand, we show that the lenght localization and participation number, do not depended of system size and contact coupling in the thermodynamic limit. Finally we discuss possible length dependent origins for the large discrepancies among experimental results for the electronic transport in DNA sample
    • 

    corecore