6,862 research outputs found
Wrong sign and symmetric limits and non-decoupling in 2HDMs
We analyse the possibility that, in two Higgs doublet models, one or more of
the Higgs couplings to fermions or to gauge bosons change sign, relative to the
respective Higgs Standard Model couplings. Possible sign changes in the
coupling of a neutral scalar to charged ones are also discussed. These
\textit{wrong signs} can have important physical consequences, manifesting
themselves in Higgs production via gluon fusion or Higgs decay into two gluons
or into two photons. We consider all possible wrong sign scenarios, and also
the \textit{symmetric limit}, in all possible Yukawa implementations of the two
Higgs doublet model, in two different possibilities: the observed Higgs boson
is the lightest CP-even scalar, or the heaviest one. We also analyse thoroughly
the impact of the currently available LHC data on such scenarios. With all 8
TeV data analysed, all wrong sign scenarios are allowed in all Yukawa types,
even at the 1 level. However, we will show that B-physics constraints
are crucial in excluding the possibility of wrong sign scenarios in the case
where is below 1. We will also discuss the future prospects for
probing the wrong sign scenarios at the next LHC run. Finally we will present a
scenario where the alignment limit could be excluded due to non-decoupling in
the case where the heavy CP-even Higgs is the one discovered at the LHC.Comment: 20 pages, 15 figure
Revisiting the distance to the nearest UHECR source: Effects of extra-galactic magnetic fields
We update the constraints on the location of the nearest UHECR source. By
analyzing recent data from the Pierre Auger Observatory using state-of-the-art
CR propagation models, we reaffirm the need of local sources with a distance
less than 25-100 Mpc, depending on mass composition. A new fast semi-analytical
method for the propagation of UHECR in environments with turbulent magnetic
fields is developed. The onset of an enhancement and a low-energy magnetic
horizon of cosmic rays from sources located within a particular distance range
is demonstrated. We investigate the distance to the nearest source, taking into
account these magnetic field effects. The results obtained highlight the
robustness of our constrained distances to the nearest source
Pequi oil.
bitstream/item/165230/1/Pequi-oil-AOCS-Lipid-Library.pdf; bitstream/item/167460/1/Pequi-oil-AOCS-Lipid-Library.pdf3 f
Spectra of ultrabroadband squeezed pulses and the finite-time Unruh-Davies effect
We study spectral properties of quantum radiation of ultimately short
duration. In particular, we introduce a continuous multimode squeezing operator
for the description of subcycle pulses of entangled photons generated by a
coherent-field driving in a thin nonlinear crystal with second order
susceptibility. We find the ultrabroadband spectra of the emitted quantum
radiation perturbatively in the strength of the driving field. These spectra
can be related to the spectra expected in an Unruh-Davies experiment with a
finite time of acceleration. In the time domain, we describe the corresponding
behavior of the normally ordered electric field variance.Comment: 11 pages, 5 figure
Fatigue behavior of different geometry scaffolds for bone replacement
When transplanting bone tissue is not a possibility, tissue engineering is responsible for developing solutions to substitute the functions of the missing bone structure or support the process of bone regeneration. Scaffolds can be used to fulfill this mission by supporting loads that were applied to the missing bone, supporting the cell regenerating process, allowing for the necessary nutrients and oxygen diffusion and delivering growth factors or drugs. Scaffold geometry design must support static and dynamic loads up to 20 MPa in order to replace human trabecular bone. Also, it should generate macro and micro pores to support cell growth and mineral precipitation, while all pores should be interconnected for nutrient and oxygen diffusion. Scaffolds were fabricated according to ASTM-695 standard, using two different layouts, 50% porosity and a theoretical distance of 0.8 mm between each filament. A 400 µm diameter nozzle was used, and scaffolds were produced at 215 ºC with deposition rate of 30 mm/s. Both designs were fatigue tested until 3600 cycles, using different load amplitudes and a frequency of 0.25 Hz. The orthogonal scaffold showed improved behavior, with compression modulus reaching 680 MPa, when a maximum stress of 14.5 MPa was applied.info:eu-repo/semantics/publishedVersio
- …