141 research outputs found
Complement-Mediated Virus Infectivity Neutralisation by HLA Antibodies Is Associated with Sterilising Immunity to SIV Challenge in the Macaque Model for HIV/AIDS.
Sterilising immunity is a desired outcome for vaccination against human immunodeficiency virus (HIV) and has been observed in the macaque model using inactivated simian immunodeficiency virus (SIV). This protection was attributed to antibodies specific for cell proteins including human leucocyte antigens (HLA) class I and II incorporated into virions during vaccine and challenge virus preparation. We show here, using HLA bead arrays, that vaccinated macaques protected from virus challenge had higher serum antibody reactivity compared with non-protected animals. Moreover, reactivity was shown to be directed against HLA framework determinants. Previous studies failed to correlate serum antibody mediated virus neutralisation with protection and were confounded by cytotoxic effects. Using a virus entry assay based on TZM-bl cells we now report that, in the presence of complement, serum antibody titres that neutralise virus infectivity were higher in protected animals. We propose that complement-augmented virus neutralisation is a key factor in inducing sterilising immunity and may be difficult to achieve with HIV/SIV Env-based vaccines. Understanding how to overcome the apparent block of inactivated SIV vaccines to elicit anti-envelope protein antibodies that effectively engage the complement system could enable novel anti-HIV antibody vaccines that induce potent, virolytic serological response to be developed
Deep Sequencing of the Vaginal Microbiota of Women with HIV
BACKGROUND: Women living with HIV and co-infected with bacterial vaginosis (BV) are at higher risk for transmitting HIV to a partner or newborn. It is poorly understood which bacterial communities constitute BV or the normal vaginal microbiota among this population and how the microbiota associated with BV responds to antibiotic treatment.
METHODS AND FINDINGS: The vaginal microbiota of 132 HIV positive Tanzanian women, including 39 who received metronidazole treatment for BV, were profiled using Illumina to sequence the V6 region of the 16S rRNA gene. Of note, Gardnerella vaginalis and Lactobacillus iners were detected in each sample constituting core members of the vaginal microbiota. Eight major clusters were detected with relatively uniform microbiota compositions. Two clusters dominated by L. iners or L. crispatus were strongly associated with a normal microbiota. The L. crispatus dominated microbiota were associated with low pH, but when L. crispatus was not present, a large fraction of L. iners was required to predict a low pH. Four clusters were strongly associated with BV, and were dominated by Prevotella bivia, Lachnospiraceae, or a mixture of different species. Metronidazole treatment reduced the microbial diversity and perturbed the BV-associated microbiota, but rarely resulted in the establishment of a lactobacilli-dominated microbiota.
CONCLUSIONS: Illumina based microbial profiling enabled high though-put analyses of microbial samples at a high phylogenetic resolution. The vaginal microbiota among women living with HIV in Sub-Saharan Africa constitutes several profiles associated with a normal microbiota or BV. Recurrence of BV frequently constitutes a different BV-associated profile than before antibiotic treatment
Community Analysis of Chronic Wound Bacteria Using 16S rRNA Gene-Based Pyrosequencing: Impact of Diabetes and Antibiotics on Chronic Wound Microbiota
Background: Bacterial colonization is hypothesized to play a pathogenic role in the non-healing state of chronic wounds. We characterized wound bacteria from a cohort of chronic wound patients using a 16S rRNA gene-based pyrosequencing approach and assessed the impact of diabetes and antibiotics on chronic wound microbiota. Methodology/Principal Findings: We prospectively enrolled 24 patients at a referral wound center in Baltimore, MD; sampled patients' wounds by curette; cultured samples under aerobic and anaerobic conditions; and pyrosequenced the 16S rRNA V3 hypervariable region. The 16S rRNA gene-based analyses revealed an average of 10 different bacterial families in wounds-approximately 4 times more than estimated by culture-based analyses. Fastidious anaerobic bacteria belonging to the Clostridiales family XI were among the most prevalent bacteria identified exclusively by 16S rRNA gene-based analyses. Community-scale analyses showed that wound microbiota from antibiotic treated patients were significantly different from untreated patients (p = 0.007) and were characterized by increased Pseudomonadaceae abundance. These analyses also revealed that antibiotic use was associated with decreased Streptococcaceae among diabetics and that Streptococcaceae was more abundant among diabetics as compared to non-diabetics. Conclusions/Significance: The 16S rRNA gene-based analyses revealed complex bacterial communities including anaerobic bacteria that may play causative roles in the non-healing state of some chronic wounds. Our data suggest that antimicrobial therapy alters community structure-reducing some bacteria while selecting for others
Immune Response to Lactobacillus plantarum Expressing Borrelia burgdorferi OspA Is Modulated by the Lipid Modification of the Antigen
Over the past decade there has been increasing interest in the use of lactic acid bacteria as mucosal delivery vehicles for vaccine antigens, microbicides and therapeutics. We investigated the mechanism by which a mucosal vaccine based in recombinant lactic acid bacteria breaks the immunological tolerance of the gut in order to elicit a protective immune response.We analyzed how the lipid modification of OspA affects the localization of the antigen in our delivery vehicle using a number of biochemistry techniques. Furthermore, we examined how OspA-expressing L. plantarum breaks the oral tolerance of the gut by stimulating human intestinal epithelial cells, peripheral blood mononuclear cells and monocyte derived dendritic cells and measuring cytokine production. We show that the leader peptide of OspA targets the protein to the cell envelope of L. plantarum, and it is responsible for protein export across the membrane. Mutation of the lipidation site in OspA redirects protein localization within the cell envelope. Further, we show that lipidated-OspA-expressing L. plantarum does not induce secretion of the pro-inflammatory cytokine IL-8 by intestinal epithelial cells. In addition, it breaks oral tolerance of the gut via Th1/Th2 cell mediated immunity, as shown by the production of pro- and anti-inflammatory cytokines by human dendritic cells, and by the production of IgG2a and IgG1 antibodies, respectively.Lipid modification of OspA expressed in L. plantarum modulates the immune response to this antigen through a Th1/Th2 immune response
The Role of Natural Killer (NK) Cells and NK Cell Receptor Polymorphisms in the Assessment of HIV-1 Neutralization
The importance of innate immune cells in HIV-1 pathogenesis and protection has been highlighted by the role of natural killer (NK) cells in the containment of viral replication. Use of peripheral blood mononuclear cells (PBMC) in immunologic studies provides both HIV-1 target cells (ie. CD4+ T cells), as well as anti-HIV-1 effector cells, such as NK cells. In this study, NK and other immune cell populations were analyzed in HIV-negative donor PBMC for an impact on the anti-HIV activity of polyclonal and monoclonal antibodies. NK cell percentages were significantly higher in donor PBMC that supported lower levels of viral replication. While the percentage of NK cells was not directly associated with neutralization titers, NK cell-depletion significantly diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor (KIR) and FcγRIIIa alleles appear to be associated with this affect. These findings demonstrate that NK cells and NK cell receptor polymorphisms may influence assessment of traditional HIV-1 neutralization in a platform where antibody is continuously present. This format appears to simultaneously assess conventional entry inhibition (neutralization) and non-neutralizing antibody-dependent HIV inhibition, which may provide the opportunity to delineate the dominant antibody function(s) in polyclonal vaccine responses
The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk
© The Author(s) 2017. Background: Preterm birth is the primary cause of infant death worldwide. A short cervix in the second trimester of pregnancy is a risk factor for preterm birth. In specific patient cohorts, vaginal progesterone reduces this risk. Using 16S rRNA gene sequencing, we undertook a prospective study in women at risk of preterm birth (n = 161) to assess (1) the relationship between vaginal microbiota and cervical length in the second trimester and preterm birth risk and (2) the impact of vaginal progesterone on vaginal bacterial communities in women with a short cervix. Results: Lactobacillus iners dominance at 16 weeks of gestation was significantly associated with both a short cervix < 25 mm (n = 15, P < 0.05) and preterm birth < 34+0 weeks (n = 18; P < 0.01; 69% PPV). In contrast, Lactobacillus crispatus dominance was highly predictive of term birth (n = 127, 98% PPV). Cervical shortening and preterm birth were not associated with vaginal dysbiosis. A longitudinal characterization of vaginal microbiota (< 18, 22, 28, and 34 weeks) was then undertaken in women receiving vaginal progesterone (400 mg/OD, n = 25) versus controls (n = 42). Progesterone did not alter vaginal bacterial community structure nor reduce L. iners-associated preterm birth (< 34 weeks). Conclusions: L. iners dominance of the vaginal microbiota at 16 weeks of gestation is a risk factor for preterm birth, whereas L. crispatus dominance is protective against preterm birth. Vaginal progesterone does not appear to impact the pregnancy vaginal microbiota. Patients and clinicians who may be concerned about "infection risk" associated with the use of a vaginal pessary during high-risk pregnancy can be reassured
Cellular Proteins in Influenza Virus Particles
Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes
The epidemiology of bacterial vaginosis in relation to sexual behaviour
<p>Abstract</p> <p>Background</p> <p>Bacterial vaginosis (BV) has been most consistently linked to sexual behaviour, and the epidemiological profile of BV mirrors that of established sexually transmitted infections (STIs). It remains a matter of debate however whether BV pathogenesis does actually involve sexual transmission of pathogenic micro-organisms from men to women. We therefore made a critical appraisal of the literature on BV in relation to sexual behaviour.</p> <p>Discussion</p> <p><it>G. vaginalis </it>carriage and BV occurs rarely with children, but has been observed among adolescent, even sexually non-experienced girls, contradicting that sexual transmission is a necessary prerequisite to disease acquisition. <it>G. vaginalis </it>carriage is enhanced by penetrative sexual contact but also by non-penetrative digito-genital contact and oral sex, again indicating that sex <it>per se</it>, but not necessarily coital transmission is involved. Several observations also point at female-to-male rather than at male-to-female transmission of <it>G. vaginalis</it>, presumably explaining the high concordance rates of <it>G. vaginalis </it>carriage among couples. Male antibiotic treatment has not been found to protect against BV, condom use is slightly protective, whereas male circumcision might protect against BV. BV is also common among women-who-have-sex-with-women and this relates at least in part to non-coital sexual behaviours. Though male-to-female transmission cannot be ruled out, overall there is little evidence that BV acts as an STD. Rather, we suggest BV may be considered a sexually enhanced disease (SED), with frequency of intercourse being a critical factor. This may relate to two distinct pathogenetic mechanisms: (1) in case of unprotected intercourse alkalinisation of the vaginal niche enhances a shift from lactobacilli-dominated microflora to a BV-like type of microflora and (2) in case of unprotected and protected intercourse mechanical transfer of perineal enteric bacteria is enhanced by coitus. A similar mechanism of mechanical transfer may explain the consistent link between non-coital sexual acts and BV. Similar observations supporting the SED pathogenetic model have been made for vaginal candidiasis and for urinary tract infection.</p> <p>Summary</p> <p>Though male-to-female transmission cannot be ruled out, overall there is incomplete evidence that BV acts as an STI. We believe however that BV may be considered a <it>sexually enhanced disease</it>, with frequency of intercourse being a critical factor.</p
- …