15 research outputs found

    The effect of high dose antibiotic impregnated cement on rate of surgical site infection after hip hemiarthroplasty for fractured neck of femur : a protocol for a double-blind quasi randomised controlled trial

    Get PDF
    Background: Mortality following hip hemiarthroplasty is in the range of 10-40% in the first year, with much attributed to post-operative complications. One such complication is surgical site infection (SSI), which at the start of this trial affected 4.68% of patients in the UK having this operation. Compared to SSI rates of elective hip surgery, at less than 1%, this figure is elevated. The aim of this quasi randomised controlled trial (RCT) is to determine if high dose antibiotic impregnated cement can reduce the SSI in patients at 12-months after hemiarthroplasty for intracapsular fractured neck of femur. Methods: 848 patients with an intracapsular fractured neck of femur requiring a hip hemiarthroplasty are been recruited into this two-centre double-blind quasi RCT. Participants were recruited before surgery and quasi randomised to standard care or intervention group. Participants, statistician and outcome assessors were blind to treatment allocation throughout the study. The intervention consisted of high dose antibiotic impregnated cement consisting of 1 gram Clindamycin and 1 gram of Gentamicin. The primary outcome is Health Protection Agency (HPA) defined deep surgical site infection at 12 months. Secondary outcomes include HPA defined superficial surgical site infection at 30 days, 30 and 90-day mortality, length of hospital stay, critical care stay, and complications. Discussion: Large randomised controlled trials assessing the effectiveness of a surgical intervention are uncommon, particularly in the speciality of orthopaedics. The results from this trial will inform evidence-based recommendations for antibiotic impregnated cement in the management of patients with a fractured neck of femur undergoing a hip hemiarthroplasty. If high dose antibiotic impregnated cement is found to be an effective intervention, implementation into clinical practice could improve long-term outcomes for patients undergoing hip hemiarthroplasty

    The influence of ultrasound on the release of gentamicin from antibiotic-loaded acrylic beads and bone cements

    No full text
    Gentamicin-loaded acrylic beads are loosely placed in infected bone cavities, whereas gentamicin-loaded acrylic bone cement is used as a mechanical filler in bone to anchor prosthetic components. Both drug delivery systems are used to decrease infection rates by gentamicin release. The objective of this study is to investigate the effects of pulsed ultrasound on gentamicin release from both materials. Gentamicin release from gentamicin-loaded beads (Septopal) and from three commercially-available brands of gentamicin-loaded bone cement (CMW 1, Palacos R-G, and Palamed G) was measured after 18 h of exposure in PBS to an ultrasonic field of 46.5 kHz in a 1:3 duty cycle with an average acoustic intensity of 167 mW/cm(2). Samples not exposed to ultrasound were used as controls. Pulsed ultrasound significantly enhanced gentamicin release from gentamicin-loaded beads, whereas gentamicin release from the gentamicin-loaded bone cements was not significantly enhanced. Mercury intrusion porosimetry revealed an increased distribution of pores between 0.1 and 0.01 mu m in beads after gentamicin release, while in bone cements no increase in the number of pores was found. Increased gentamicin release in beads due to ultrasound may be explained by microstreaming in a porous structure, whereas the absence of changes in pore structure after gentamicin release in bone cement is concurrent with the lack of an enhanced release of the antibiotic by ultrasound. As an effective treatment of infections requires high local concentrations of antibiotic, increased gentamicin release due to ultrasound may be of clinical significance, especially since ultrasound has been demonstrated to increase bacterial killing by antibiotics. (c) 2005 Wiley Periodicals, Inc

    Increased release of gentamicin from acrylic bone cements under influence of low-frequency ultrasound

    No full text
    The release profile of antibiotics from antibiotic-loaded bone cement, used to prevent infections in total joint arthroplasty, is neither ideal nor complete. Ultrasound has been used to allow drugs to cross otherwise impermeable barriers. The aim of this study was to establish a possible effect of ultrasound on antibiotic release from bone cements. Samples were made of three commercially available gentamicin-loaded bone cements. Part of the samples was allowed to release gentamicin for 3 weeks before insonation. An insonation device produced an ultrasound field with a time average acoustic intensity of 167 mW/cm(2) at a frequency of 46.5 kHz. The samples were exposed to the ultrasound field or not exposed to it as a control. The amount of gentamicin released was measured by fluorescence polarization immunoassay. There was a limited increase of gentamicin release with application of ultrasound in fresh samples but not in the samples that had been allowed to release gentamicin. For fresh samples, a linear regression model showed that this ultrasound effect was statistically significant. The mechanism behind these observations is not clear, but it is suggested that microstreaming or localized temperature rises may be involved. (C) 2003 Elsevier B.V. All rights reserved

    Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo

    No full text
    Aims: The aim of this study is to investigate whether pulsed ultrasound (US) in combination with gentamicin yields a decreased viability of bacteria in biofilms on bone cements in vivo. Methods and Results: Bacterial survival on bone cement in the presence and absence of ultrasound was compared in a rabbit model. Two bone cement samples with an Escherichia coli ATCC 10798 biofilm were implanted in a total of nine rabbits. In two groups bone cement discs loaded with gentamicin, freshly prepared and aged were used, and in one group unloaded bone cement discs in combination with systemically administered gentamicin. Pulsed ultrasound with a frequency of 28.48 kHz and a maximum acoustic intensity of 500 mW cm(-2) was applied continuously from 24 h till 72 h postsurgery on one of the two implanted discs. After euthanization and removal of the bacteria from the discs, the number of viable bacteria were quantified and skin samples were analysed for histopathological examination. Application of ultrasound, combined with gentamicin, reduced the viability of the biofilms in all three groups varying between 58 and 69% compared with the negative control. Histopathological examinations showed no skin lesions. Conclusions: Ultrasound resulted in a tendency of improved efficacy of gentamicin, either applied locally or systemically. Usage of ultrasound in this model proved to be safe. Significance and Impact of the Study: This study implies that ultrasound could improve the prevention of infection immediately after surgery, especially because the blomaterials, gentamicin and ultrasound used in this model are all in clinical usage, but not yet combined in clinical practice
    corecore