789 research outputs found
CD44+ cancer stem-like cells in EBV-associated nasopharyngeal carcinoma.
published_or_final_versio
A study on the characteristics of plasma polymer thin film with controlled nitrogen flow rate
Nitrogen-doped thiophene plasma polymer [N-ThioPP] thin films were deposited by radio frequency (13.56 MHz) plasma-enhanced chemical vapor deposition method. Thiophene was used as organic precursor (carbon source) with hydrogen gas as the precursor bubbler gas. Additionally, nitrogen gas [N2] was used as nitrogen dopant. Furthermore, additional argon was used as a carrier gas. The as-grown polymerized thin films were analyzed using ellipsometry, Fourier-transform infrared [FT-IR] spectroscopy, Raman spectroscopy, and water contact angle measurement. The ellipsometry results showed the refractive index change of the N-ThioPP film. The FT-IR spectra showed that the N-ThioPP films were completely fragmented and polymerized from thiophene
State-space Manifold and Rotating Black Holes
We study a class of fluctuating higher dimensional black hole configurations
obtained in string theory/ -theory compactifications. We explore the
intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the
Hessian of the coarse graining entropy, defined over an ensemble of brane
microstates. It has been shown that the state-space geometry spanned by the set
of invariant parameters is non-degenerate, regular and has a negative scalar
curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes,
supersymmetric black holes, - configurations and the
associated BMPV black holes. Interestingly, these solutions demonstrate that
the principal components of the state-space metric tensor admit a positive
definite form, while the off diagonal components do not. Furthermore, the ratio
of diagonal components weakens relatively faster than the off diagonal
components, and thus they swiftly come into an equilibrium statistical
configuration. Novel aspects of the scaling property suggest that the
brane-brane statistical pair correlation functions divulge an asymmetric
nature, in comparison with the others. This approach indicates that all above
configurations are effectively attractive and stable, on an arbitrary
hyper-surface of the state-space manifolds. It is nevertheless noticed that
there exists an intriguing relationship between non-ideal inter-brane
statistical interactions and phase transitions. The ramifications thus
described are consistent with the existing picture of the microscopic CFTs. We
conclude with an extended discussion of the implications of this work for the
physics of black holes in string theory.Comment: 44 pages, Keywords: Rotating Black Holes; State-space Geometry;
Statistical Configurations, String Theory, M-Theory. PACS numbers: 04.70.-s
Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum
aspects of black holes, evaporation, thermodynamics; 04.50.Gh
Higher-dimensional black holes, black strings, and related objects. Edited
the bibliograph
Holographic Conductivity in Disordered Systems
The main purpose of this paper is to holographically study the behavior of
conductivity in 2+1 dimensional disordered systems. We analyze probe D-brane
systems in AdS/CFT with random closed string and open string background fields.
We give a prescription of calculating the DC conductivity holographically in
disordered systems. In particular, we find an analytical formula of the
conductivity in the presence of codimension one randomness. We also
systematically study the AC conductivity in various probe brane setups without
disorder and find analogues of Mott insulators.Comment: 43 pages, 28 figures, latex, references added, minor correction
Strongly magnetized pulsars: explosive events and evolution
Well before the radio discovery of pulsars offered the first observational
confirmation for their existence (Hewish et al., 1968), it had been suggested
that neutron stars might be endowed with very strong magnetic fields of
-G (Hoyle et al., 1964; Pacini, 1967). It is because of their
magnetic fields that these otherwise small ed inert, cooling dead stars emit
radio pulses and shine in various part of the electromagnetic spectrum. But the
presence of a strong magnetic field has more subtle and sometimes dramatic
consequences: In the last decades of observations indeed, evidence mounted that
it is likely the magnetic field that makes of an isolated neutron star what it
is among the different observational manifestations in which they come. The
contribution of the magnetic field to the energy budget of the neutron star can
be comparable or even exceed the available kinetic energy. The most magnetised
neutron stars in particular, the magnetars, exhibit an amazing assortment of
explosive events, underlining the importance of their magnetic field in their
lives. In this chapter we review the recent observational and theoretical
achievements, which not only confirmed the importance of the magnetic field in
the evolution of neutron stars, but also provide a promising unification scheme
for the different observational manifestations in which they appear. We focus
on the role of their magnetic field as an energy source behind their persistent
emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of
"NewCompStar" European COST Action MP1304, 43 pages, 8 figure
COVID-19 In Children Across Three Asian Cosmopolitan Regions
As another wave of COVID-19 outbreak has approached in July 2020, a larger scale COVID-19 pediatric Asian cohort summarizing the clinical observations is warranted. Children confirmed with COVID-19 infection from the Republic of Korea, the Hong Kong Special Administrative Region (HKSAR) and Wuhan, China, during their first waves of local outbreaks were included. Their clinical characteristics and the temporal sequences of the first waves of local paediatric outbreaks were compared. Four hundred and twenty three children with COVID-19 were analyzed. Wuhan had the earliest peak, followed by Korea and HKSAR. Compared with Korea and Wuhan, patients in HKSAR were significantly older (mean age: 12.9 vs. 10.8 vs. 6.6 years, pâ<â0.001, respectively) and had more imported cases (87.5% vs. 16.5% vs. 0%, pâ<â0.001, respectively). The imported cases were also older (13.4 vs. 7.6 years, pâ<â0.001). More cases in HKSAR were asymptomatic compared to Korea and Wuhan (45.5% vs. 22.0% vs. 20.9%, pâ<â0.001, respectively), and significantly more patients from Wuhan developed fever (40.6% vs. 29.7% vs. 21.6%, p=0.003, respectively). There were significantly less imported cases than domestic cases developing fever after adjusting for age and region of origin (pâ=â0.046). 5.4% to 10.8% of patients reported anosmia and ageusia. None developed pediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 (PMIS-TS). In general, adolescents were more likely to be asymptomatic and less likely to develop fever, but required longer hospital stays. In conclusion, majority patients in this pediatric Asian cohort had a mild disease. None developed PIMS-TS. Their clinical characteristics were influenced by travel history and age
Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well
A universal barcode system for land plants would be a valuable resource, with potential utility in fields as diverse as ecology, floristics, law enforcement and industry. However, the application of plant barcoding has been constrained by a lack of consensus regarding the most variable and technically practical DNA region(s). We compared eight candidate plant barcoding regions from the plastome and one from the mitochondrial genome for how well they discriminated the monophyly of 92 species in 32 diverse genera of land plants (Nâ=â251 samples). The plastid markers comprise portions of five coding (rpoB, rpoC1, rbcL, matK and 23S rDNA) and three non-coding (trnH-psbA, atpFâatpH, and psbKâpsbI) loci. Our survey included several taxonomically complex groups, and in all cases we examined multiple populations and species. The regions differed in their ability to discriminate species, and in ease of retrieval, in terms of amplification and sequencing success. Single locus resolution ranged from 7% (23S rDNA) to 59% (trnH-psbA) of species with well-supported monophyly. Sequence recovery rates were related primarily to amplification success (85â100% for plastid loci), with matK requiring the greatest effort to achieve reasonable recovery (88% using 10 primer pairs). Several loci (matK, psbKâpsbI, trnH-psbA) were problematic for generating fully bidirectional sequences. Setting aside technical issues related to amplification and sequencing, combining the more variable plastid markers provided clear benefits for resolving species, although with diminishing returns, as all combinations assessed using four to seven regions had only marginally different success rates (69â71%; values that were approached by several two- and three-region combinations). This performance plateau may indicate fundamental upper limits on the precision of species discrimination that is possible with DNA barcoding systems that include moderate numbers of plastid markers. Resolution to the contentious debate on plant barcoding should therefore involve increased attention to practical issues related to the ease of sequence recovery, global alignability, and marker redundancy in multilocus plant DNA barcoding systems
Control of substrate access to the active site in methane monooxygenase
Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs). Soluble MMO contains three protein components, a 251-kilodalton hydroxylase (MMOH), a 38.6-kilodalton reductase (MMOR), and a 15.9-kilodalton regulatory protein (MMOB), required to couple electron consumption with substrate hydroxylation at the catalytic diiron centre of MMOH. Until now, the role of MMOB has remained ambiguous owing to a lack of atomic-level information about the MMOHâMMOB (hereafter termed HâB) complex. Here we remedy this deficiency by providing a crystal structure of HâB, which reveals the manner by which MMOB controls the conformation of residues in MMOH crucial for substrate access to the active site. MMOB docks at the α[subscript 2]ÎČ[subscript 2] interface of α[subscript 2]ÎČ[subscript 2]Îł[subscript 2] MMOH, and triggers simultaneous conformational changes in the α-subunit that modulate oxygen and methane access as well as proton delivery to the diiron centre. Without such careful control by MMOB of these substrate routes to the diiron active site, the enzyme operates as an NADH oxidase rather than a monooxygenase. Biological catalysis involving small substrates is often accomplished in nature by large proteins and protein complexes. The structure presented in this work provides an elegant example of this principle.National Institute of General Medical Sciences (U.S.) (Grant GM 32114
- âŠ