36 research outputs found

    Health and climate related ecosystem services provided by street trees in the urban environment

    Full text link

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    A Domain Specific Language to Simplify the Creation of Large Scale Federated Model Sets

    No full text
    Part 7: Modelling, Visualization and Decision SupportInternational audienceThis paper presents an attempt to address the challenge of modeling complex systems in which people, energy, and the environment meet. This challenge is met by developing a simple domain specific language for building systems models in a federated modeling environment. The language and its support infrastructure are designed for simplicity and ease of use. This language is demonstrated using a thermodynamic model of a biomass cookstove for the developing world as an example, and the use of the tools described in this paper to further extend that cookstove model into an end-to-end design tool for cookstoves and other energy systems for the developing world is discussed
    corecore