124 research outputs found
Support for a synaptic chain model of neuronal sequence generation
In songbirds, the remarkable temporal precision of song is generated by a sparse sequence of bursts in the premotor nucleus HVC. To distinguish between two possible classes of models of neural sequence generation, we carried out intracellular recordings of HVC neurons in singing zebra finches (Taeniopygia guttata). We found that the subthreshold membrane potential is characterized by a large, rapid depolarization 5–10 ms before burst onset, consistent with a synaptically connected chain of neurons in HVC. We found no evidence for the slow membrane potential modulation predicted by models in which burst timing is controlled by subthreshold dynamics. Furthermore, bursts ride on an underlying depolarization of ~10-ms duration, probably the result of a regenerative calcium spike within HVC neurons that could facilitate the propagation of activity through a chain network with high temporal precision. Our results provide insight into the fundamental mechanisms by which neural circuits can generate complex sequential behaviours.National Institutes of Health (U.S.) (Grant MH067105)National Institutes of Health (U.S.) (Grant DC009280)National Science Foundation (U.S.) (IOS-0827731)Alfred P. Sloan Foundation (Research Fellowship
Neural circuits controlling behavior and autonomic functions in medicinal leeches
In the study of the neural circuits underlying behavior and autonomic functions, the stereotyped and accessible nervous system of medicinal leeches, Hirudo sp., has been particularly informative. These leeches express well-defined behaviors and autonomic movements which are amenable to investigation at the circuit and neuronal levels. In this review, we discuss some of the best understood of these movements and the circuits which underlie them, focusing on swimming, crawling and heartbeat. We also discuss the rudiments of decision-making: the selection between generally mutually exclusive behaviors at the neuronal level
Measurement of the Rates of Synthesis of Three Components of Ribosomes of Mycobacterium fortuitum: A Theoretical Approach to qRT-PCR Experimentation
BACKGROUND: Except for the ribosomal protein L12 (rplL), ribosomal proteins are present as one copy per ribosome; L12 (rplL) is unusual because it is present as four copies per ribosome. Thus, the strategies used by Mycobacterium fortuitum to regulate ribosomal protein synthesis were investigated, including evaluations of the rates of chain elongations of 16S rRNA, rplL and ribosomal protein S12 (rpsL). METHODOLOGY: RNA was isolated from cell cultures and cDNA was prepared. The numbers of cDNA copies of 16S rRNA, precursor-16S rRNA and transcripts of rpsL and rplL were quantified by qRT-PCR and then related to the rates of 16S rRNA, rpsL and rplL chain elongations by means of a mathematical framework for coupled transcription/translation. PRINCIPAL FINDINGS: The rates of synthesis of 16S rRNA, rpsL and rplL respectively were found to be approximately 50 x 10(3) nucleotides h(-1), 1.6 x 10(3) amino acid residues h(-1) and 3.4 x 10(3) amino acid residues h(-1). The number of transcripts of rplL was approximately twice that of rpsL. These data account for the presence of one copy of rpsL and four copies of rplL per ribosome, and reveal that the rate of M. fortuitum ribosome synthesis was closer to that of M. tuberculosis than to E. coli. Except for rplJ, the elongation rate obtained for rpsL was inferred to be appropriate for all other proteins present as one copy per ribosome. SIGNIFICANCE: The results obtained provide the basis for a comprehensive view of the kinetics of ribosome synthesis, and of the ways that bacterial cells utilize genes encoding ribosomal proteins. The methodology also applies to proteins involved in transcription, energy generation and to bacterial proteins in general. The method proposed for measuring the fidelity of cDNA preparations is intrinsically much more sensitive than procedures that measure the integrity of 16S rRNA
Maturation of GABAergic Inhibition Promotes Strengthening of Temporally Coherent Inputs among Convergent Pathways
Spike-timing-dependent plasticity (STDP), a form of Hebbian plasticity, is inherently stabilizing. Whether and how GABAergic inhibition influences STDP is not well understood. Using a model neuron driven by converging inputs modifiable by STDP, we determined that a sufficient level of inhibition was critical to ensure that temporal coherence (correlation among presynaptic spike times) of synaptic inputs, rather than initial strength or number of inputs within a pathway, controlled postsynaptic spike timing. Inhibition exerted this effect by preferentially reducing synaptic efficacy, the ability of inputs to evoke postsynaptic action potentials, of the less coherent inputs. In visual cortical slices, inhibition potently reduced synaptic efficacy at ages during but not before the critical period of ocular dominance (OD) plasticity. Whole-cell recordings revealed that the amplitude of unitary IPSCs from parvalbumin positive (Pv+) interneurons to pyramidal neurons increased during the critical period, while the synaptic decay time-constant decreased. In addition, intrinsic properties of Pv+ interneurons matured, resulting in an increase in instantaneous firing rate. Our results suggest that maturation of inhibition in visual cortex ensures that the temporally coherent inputs (e.g. those from the open eye during monocular deprivation) control postsynaptic spike times of binocular neurons, a prerequisite for Hebbian mechanisms to induce OD plasticity
Defining the Boundaries of Development wih Plasticity
International audienceThe concept of plasticity has always been present in the history of developmental biology, both within the theory of epigenesis and within morphogenesis studies. However this tradition relies also upon a genetic conception of plasticity. Founded upon the concepts of "phenotypic plasticity" and "reaction norm," this genetic conception focuses on the array of possible phenotypic change in relation to diversified environments. Another concept of plasticity can be found in recent publications by some developmental biologists (Gilbert, West-Eberhard). I argue that these authors adopt a "broad conception of plasticity" that is closely related to a notion of development as something that is ongoing throughout an organism's lifecycle, and has no clear-cut boundaries. However, I suggest that given a narrow conception of plasticity, one can define temporal boundaries for development that are linked to specific features of the morphological process, which are different from behavioral and physiological processes
Catalytic and Non-Catalytic Roles for the Mono-ADP-Ribosyltransferase Arr in the Mycobacterial DNA Damage Response
Recent evidence indicates that the mycobacterial response to DNA double strand breaks (DSBs) differs substantially from previously characterized bacteria. These differences include the use of three DSB repair pathways (HR, NHEJ, SSA), and the CarD pathway, which integrates DNA damage with transcription. Here we identify a role for the mono-ADP-ribosyltransferase Arr in the mycobacterial DNA damage response. Arr is transcriptionally induced following DNA damage and cellular stress. Although Arr is not required for induction of a core set of DNA repair genes, Arr is necessary for suppression of a set of ribosomal protein genes and rRNA during DNA damage, placing Arr in a similar pathway as CarD. Surprisingly, the catalytic activity of Arr is not required for this function, as catalytically inactive Arr was still able to suppress ribosomal protein and rRNA expression during DNA damage. In contrast, Arr substrate binding and catalytic activities were required for regulation of a small subset of other DNA damage responsive genes, indicating that Arr has both catalytic and noncatalytic roles in the DNA damage response. Our findings establish an endogenous cellular function for a mono-ADP-ribosyltransferase apart from its role in mediating Rifampin resistance
Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields
A fundamental question in understanding neuronal computations is how dendritic events influence the output of the neuron. Different forms of integration of neighbouring and distributed synaptic inputs, isolated dendritic spikes and local regulation of synaptic efficacy suggest that individual dendritic branches may function as independent computational subunits. In the present paper, we study how these local computations influence the output of the neuron. Using a simple cascade model, we demonstrate that triggering somatic firing by a relatively small dendritic branch requires the amplification of local events by dendritic spiking and synaptic plasticity. The moderately branching dendritic tree of granule cells seems optimal for this computation since larger dendritic trees favor local plasticity by isolating dendritic compartments, while reliable detection of individual dendritic spikes in the soma requires a low branch number. Finally, we demonstrate that these parallel dendritic computations could contribute to the generation of multiple independent place fields of hippocampal granule cells
Phosphodiesterase Inhibition Increases CREB Phosphorylation and Restores Orientation Selectivity in a Model of Fetal Alcohol Spectrum Disorders
Background: Fetal alcohol spectrum disorders (FASD) are the leading cause of mental retardation in the western world and children with FASD present altered somatosensory, auditory and visual processing. There is growing evidence that some of these sensory processing problems may be related to altered cortical maps caused by impaired developmental neuronal plasticity. Methodology/Principal Findings: Here we show that the primary visual cortex of ferrets exposed to alcohol during the third trimester equivalent of human gestation have decreased CREB phosphorylation and poor orientation selectivity revealed by western blotting, optical imaging of intrinsic signals and single-unit extracellular recording techniques. Treating animals several days after the period of alcohol exposure with a phosphodiesterase type 1 inhibitor (Vinpocetine) increased CREB phosphorylation and restored orientation selectivity columns and neuronal orientation tuning. Conclusions/Significance: These findings suggest that CREB function is important for the maturation of orientation selectivity and that plasticity enhancement by vinpocetine may play a role in the treatment of sensory problems in FASD
Rural waste generation: a geographical survey at local scale
"The paper examines the per capita waste generation rates from from rural areas of NeamÈ› County (Romania) using thematic cartography. Geographical approach of this issue is difficult because the lack of a geostatistic database at commune scale. Spatial analysis of waste indicators reveals several disparities between localities. Comparability of data between communes located in various geographical conditions must be carrefully made according to local waste management systems. Several dysfunctionalities are outlined in order to compare these results, on the one hand, between localities and on the one hand, between recent years. Geographical analysis of waste generation rates is imperative for a proper monitoring of this sector. Data from 2009, 2010 and 2012 shows that rural waste management is in a full process of change towards a more organized, stable and efficient system." (author's abstract
The "Mendel syndrome" in science: durability of scientific literature and its effects on bibliometric analysis of individual scientists
Merit, Expertise and Measuremen
- …