17 research outputs found

    UV-Deprived Coloration Reduces Success in Mate Acquisition in Male Sand Lizards (Lacerta agilis)

    Get PDF
    Background: Recent work on animal signals has revealed a wide occurrence of UV signals in tetrapods, in particular birds, but also in lizards (and perhaps other Squamate reptiles). Our previous work on the Swedish sand lizard (Lacerta agilis) has verified, both in correlative selection analyses in the wild and with laboratory and field experiments, the importance of the green ‘badge ’ on the body sides of adult males for securing mating opportunities, probably mostly through deterring rival males rather than attracting females. The role of UV in communication has, however, never been examined. Methodology/Principal Findings: Here we show that when measured immediately after spring skin shedding, there is also signaling in the UV. By UV-depriving the signal (reflectance) with sun block chemicals fixated with permeable, harmless spray dressing, we show that males in the control group (spray dressing only) had significantly higher success in mate acquisition than UV-deprived males. Conclusions/Significance: These results suggest that at least two colour traits in sand lizards, badge area and UV, contribute to rival deterrence and/or female choice on UV characters, which elevates success in mate acquisition in UV intact male sand lizards

    Long-Term Effects of the Cleaner Fish Labroides dimidiatus on Coral Reef Fish Communities

    Get PDF
    Cleaning behaviour is deemed a mutualism, however the benefit of cleaning interactions to client individuals is unknown. Furthermore, mechanisms that may shift fish community structure in the presence of cleaning organisms are unclear. Here we show that on patch reefs (61–285 m2) which had all cleaner wrasse Labroides dimidiatus (Labridae) experimentally removed (1–5 adults reef−1) and which were then maintained cleaner-fish free over 8.5 years, individuals of two site-attached (resident) client damselfishes (Pomacentridae) were smaller compared to those on control reefs. Furthermore, resident fishes were 37% less abundant and 23% less species rich per reef, compared to control reefs. Such changes in site-attached fish may reflect lower fish growth rates and/or survivorship. Additionally, juveniles of visitors (fish likely to move between reefs) were 65% less abundant on removal reefs suggesting cleaners may also affect recruitment. This may, in part, explain the 23% lower abundance and 33% lower species richness of visitor fishes, and 66% lower abundance of visitor herbivores (Acanthuridae) on removal reefs that we also observed. This is the first study to demonstrate a benefit of cleaning behaviour to client individuals, in the form of increased size, and to elucidate potential mechanisms leading to community-wide effects on the fish population. Many of the fish groups affected may also indirectly affect other reef organisms, thus further impacting the reef community. The large-scale effect of the presence of the relatively small and uncommon fish, Labroides dimidiadus, on other fishes is unparalleled on coral reefs

    Young Aphids Avoid Erroneous Dropping when Evading Mammalian Herbivores by Combining Input from Two Sensory Modalities

    Get PDF
    Mammalian herbivores may incidentally ingest plant-dwelling insects while foraging. Adult pea aphids (Acyrthosiphon pisum) avoid this danger by dropping off their host plant after sensing the herbivore's warm and humid breath and the vibrations it causes while feeding. Aphid nymphs may also drop (to escape insect enemies), but because of their slow movement, have a lower chance of finding a new plant. We compared dropping rates of first-instar nymphs with those of adults, after exposing pea aphids to different combinations of simulated mammalian breath and vibrations. We hypothesized that nymphs would compensate for the greater risk they face on the ground by interpreting more conservatively the mammalian herbivore cues they perceive. Most adults dropped in response to breath alone, but nymphs rarely did so. Breath stimulus accompanied by one concurrent vibrational stimulus, caused a minor rise in adult dropping rates. Adding a second vibration during breath had no additional effect on adults. The nymphs, however, relied on a combination of the two types of stimuli, with a threefold increase in dropping rates when the breath was accompanied by one vibration, and a further doubling of dropping rates when the second vibration was added. The age-specificity of the aphids' herbivore detection mechanism is probably an adaptation to the different cost of dropping for the different age groups. Relying on a combination of stimuli from two sensory modalities enables the vulnerable nymphs to avoid costly mistakes. Our findings emphasize the importance of the direct trophic effect of mammalian herbivory for plant-dwelling insects

    Towards more efficient longline fisheries: fish feeding behaviour, bait characteristics and development of alternative baits

    Get PDF
    corecore