176 research outputs found

    Air ion variation at Poultry-farm, coastal, mountain, rural and urban sites in India

    Get PDF
    The air ions are continuously generated and destroyed by various processes in the atmosphere. Near the surface, the nature of ions is very complex and they show large variations in their physical properties. The attachment of small ions to the aerosol particles is depending on the mobility of air ions. High mobility air ions immediately are attached to the aerosol particles and settle down on the surface. In this study we report, about the air ion variation at different sites like Rural, Coastal, Mountain, Poultry farm and urban in the state of Maharashtra in India. The aim of this study is to understand the plausible distribution of air ions both diurnally and at different times in a day for long time (three years) and with various meteorological variables. The preliminary analysis of the data has reveled that negative air ions are observed to have attached to the aerosol particles and large aerosol particles are formed from small aerosol particles. Therefore uni-polarity factor observed to be below unity for coastal, mountain and rural site and about 2.8 at an urban site. However worst case is observed at the Poultry farm, where uni-polarity factor is 6.3, which is very harmful for human health. There is also effect of meteorological parameters on air ion concentration in the atmosphere

    Diurnal and seasonal air ion variability at rural station Ramanandnagar (17A°2'N, 74A°E), India

    Get PDF
    High-energy radiations, such as alpha and beta particles or gamma radiation, ionize air molecules into pairs of positive ions and free electrons. The diurnal and seasonal variations of these air ions were measured for the first time at a rural monitoring station in Ramanandnagar (17°2'N, 74°E), India, and the urban tropical station in Pune (18°31'N, 73°55'E) from June 2007 to May 2008. Air ion concentrations, measured using a Gerdien condenser at Pune station, increased from nighttime and reached maximum in the early morning. Compared to Pune, air ion concentration and positive-to-negative air ion ratios at Ramanandnagar increased from morning and reach maximum in the afternoon (12:00-14:00). Plant transpiration and waves in the flooded Krishna River during July-September 2007 were determined as additional sources of atmospheric ion production at Ramanandnagar. Intensive temperature inversion during winter lead to the accumulation of radon and radioactive aerosols near the Earth's surface, and hence increased the rate of ionization. Annual peaks of positive/negative ion maxima and positive-to-negative small ion ratios were observed in January 2008. It was also observed that as human activities increased, more aerosol particles were introduced into the atmosphere between 12:00-14:00 hours, during which time the average positive-to-negative air ion ratio reached peak values. During summer, radioactive gases moved upward, carrying radon and radioactive aerosols, and thereby reducing ionization. Results show a decrease in average positive and negative small ion maxima from February 2008 to May 2008

    Total column density variations of NO2 and O3 by automatic visible spectrometry over Pune, India

    Get PDF
    A single scattering radiative transfer model has been developed to calculate the air mass factors (AMFs) of NO2 and O3 for scattered light observations. The direct and scattered intensities reaching the ground have been calculated using this model, which are utilized for computation of AMFs of these species. AMFs have been used to derive the total column densities (TCDs) from slant column densities (SCDs). Daily intensity data obtained by spectroscopic observations made at Pune (18°32'N, 73°51'E) during May 2000-May 2001 are used for the computation of SCDs of NO2 and O3 by differential optical absorption spectroscopy (DOAS) technique. NO2, O3, H2O and O4 have characteristic absorption features in the visible range 462-498 nm. These features have been used in the DOAS technique. The percentage differential optical depths (DODs) of NO2, O3, H2O and O4 have been computed. The TCD of O3 has also been derived by other methods. They are in good agreement with Dobson spectrophotometer observations. Here, the daily and seasonal variations in TCDs of NO2 and O3 at Pune for the above period are discussed

    Installation of an automatic spectrometer at Mauritius and preliminary results of NO2 over Mauritius

    Get PDF
    An automatic spectrometer developed at Indian Institute of Tropical Meteorology Pune is installed at the University of Mauritius, Reduit, Mauritius for monitoring total column density of NO2 and O3. The spectrometer is programmed for observations between 80° and 90° solar zenith angles in the spectral region 410-450 nm. The observations collected for few days during September and October 1998 are analysed, and total column densities of NO2 found to be of the order of 4* 1015 molecules per cm2. This preliminary result compares with similar southern latitude stations

    CD133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD133 is a cell surface marker of haematopoietic stem and progenitor cells. Leukaemia inhibitory factor (LIF), sustains proliferation and not differentiation of embryonic stem cells. We used CD133 to purify adult human retinal cells and aimed to determine what effect LIF had on these cultures and whether they still had the ability to generate neurospheres.</p> <p>Methods</p> <p>Retinal cell suspensions were derived from adult human post-mortem tissue with ethical approval. With magnetic automated cell sorting (MACS) CD133<sup>+ </sup>retinal cells were enriched from post mortem adult human retina. CD133<sup>+ </sup>retinal cell phenotype was analysed by flow cytometry and cultured cells were observed for proliferative capacity, neuropshere generation and differentiation with or without LIF supplementation.</p> <p>Results</p> <p>We demonstrated purification (to 95%) of CD133<sup>+ </sup>cells from adult human postmortem retina. Proliferating cells were identified through BrdU incorporation and expression of the proliferation markers Ki67 and Cyclin D1. CD133<sup>+ </sup>retinal cells differentiated whilst forming neurospheres containing appropriate lineage markers including glia, neurons and photoreceptors. LIF maintained CD133<sup>+ </sup>retinal cells in a proliferative and relatively undifferentiated state (Ki67, Cyclin D1 expression) without significant neurosphere generation. Differentiation whilst forming neurospheres was re-established on LIF withdrawal.</p> <p>Conclusion</p> <p>These data support the evidence that CD133 expression characterises a population of cells within the resident adult human retina which have progenitor cell properties and that their turnover and differentiation is influenced by LIF. This may explain differences in retinal responses observed following disease or injury.</p

    Neuron-glial Interactions

    Get PDF
    Although lagging behind classical computational neuroscience, theoretical and computational approaches are beginning to emerge to characterize different aspects of neuron-glial interactions. This chapter aims to provide essential knowledge on neuron-glial interactions in the mammalian brain, leveraging on computational studies that focus on structure (anatomy) and function (physiology) of such interactions in the healthy brain. Although our understanding of the need of neuron-glial interactions in the brain is still at its infancy, being mostly based on predictions that await for experimental validation, simple general modeling arguments borrowed from control theory are introduced to support the importance of including such interactions in traditional neuron-based modeling paradigms.Junior Leader Fellowship Program by “la Caixa” Banking Foundation (LCF/BQ/LI18/11630006

    Synergistic degradation of diazo dye Direct Red 5B by Portulaca grandiflora and Pseudomonas putida

    Full text link
    Plants and bacterial consortium of Portulaca grandiflora and Pseudomonas putida showed complete decolorization of a sulfonated diazo dye Direct Red 5B within 72 h, while in vitro cultures of P. grandiflora and P. putida independently showed 92 and 81 % decolorization within 96 h, respectively. A significant induction in the activities of lignin peroxidase, tyrosinase, 2,6-dichlorophenol indophenol reductase and riboflavin reductase was observed in the roots of P. grandiflora during dye decolorization; whereas, the activities of laccase, veratryl alcohol oxidase and 2,6-dichlorophenol indophenol reductase were induced in the cells of P. putida. Plant and bacterial enzymes in the consortium gave an enhanced decolorization of Direct Red 5B synergistically. The metabolites formed after dye degradation analyzed by UV-Vis spectroscopy, Fourier transformed infrared spectroscopy and high performance liquid chromatography confirmed the biotransformation of Direct Red 5B. Differential fate of metabolism of Direct Red 5B by P. grandiflora, P. putida and their consortium were proposed with the help of gas chromatography-mass spectroscopy analysis. P. grandiflora metabolized the dye to give 1-(4-diazenylphenyl)-2-phenyldiazene, 7-(benzylamino) naphthalene-2-sulfonic acid, 7-aminonaphthalene-2-sulfonic acid and methylbenzene. P. putida gave 4-hydroxybenzenesulfonic acid and 4-hydroxynaphthalene-2-sulfonic acid and benzamide. Consortium showed the formation of benzenesulfonic acid, 4-diazenylphenol, 6-aminonaphthalen-1-ol, methylbenzene and naphthalen-1-ol. Consortium achieved an enhanced and efficient degradation of Direct Red 5B. Phytotoxicity study revealed the nontoxic nature of metabolites formed after parent dye degradation. Use of such combinatorial systems of plant and bacteria could prove to be an effective and efficient strategy for the removal of textile dyes from soil and waterways

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD–Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012–2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3–2.3) versus 2.3 (IQR 1.8–2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32–9.35) vs 4.34 (4.16–4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF

    Neuron-Glial Interactions

    Full text link
    Although lagging behind classical computational neuroscience, theoretical and computational approaches are beginning to emerge to characterize different aspects of neuron-glial interactions. This chapter aims to provide essential knowledge on neuron-glial interactions in the mammalian brain, leveraging on computational studies that focus on structure (anatomy) and function (physiology) of such interactions in the healthy brain. Although our understanding of the need of neuron-glial interactions in the brain is still at its infancy, being mostly based on predictions that await for experimental validation, simple general modeling arguments borrowed from control theory are introduced to support the importance of including such interactions in traditional neuron-based modeling paradigms.Comment: 43 pages, 2 figures, 1 table. Accepted for publication in the "Encyclopedia of Computational Neuroscience," D. Jaeger and R. Jung eds., Springer-Verlag New York, 2020 (2nd edition
    corecore