20 research outputs found

    Coronary artery surgery: cardiotomy suction or cell salvage?

    Get PDF
    Coronary artery bypass grafting (CABG) today results in what may be regarded as acceptable levels of blood loss with many institutions avoiding allogeneic red cell transfusion in over 60% of their patients. The majority of cardiac surgeons employ cardiotomy suction to preserve autologous blood during on-pump coronary artery bypass surgery; however the use of cardiotomy suction is associated with a more pronounced systemic inflammatory response and a resulting coagulopathy as well as exacerbating the microembolic load. This leads to a tendency to increased blood loss, transfusion requirement and organ dysfunction. Conversely, the avoidance of cardiotomy suction in coronary artery bypass surgery is not associated with an increased transfusion requirement. There is therefore no indication for the routine use of cardiotomy suction in on-pump coronary artery surgery

    The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended release matrices

    No full text
    Anionic polymer sodium carboxymethylcellulose (CELLOGEN® HP-HS and/or HP-12HS)was investigated for its ability to influence the release of three model drugs propranolol hydrochloride, theophylline and ibuprofen from polyethylene oxide (POLYOX™ WSR 1105 and/or Coagulant) hydrophilic matrices. For anionic ibuprofen and non-ionic theophylline, no unusual/unexpected release profiles were obtained from tablets containing a mixture of two polymers. However, for cationic propranolol HCl, a combination of polyethylene oxide (PEO) with sodium carboxymethylcellulose (NaCMC) produced a significantly slower drug release compared to the matrices with single polymers. The potential use of this synergistic interaction can be a design of new extended release pharmaceutical dosage forms with a more prolonged release (beyond 12 h) using lower polymer amount, which could be particularly beneficial for freely water-soluble drugs, preferably for once daily oral administration. In order to explain changes in the obtained drug release profiles, Fourier transform infrared absorption spectroscopy was performed. A possible explanation for the more prolonged propranolol HCl release from matrices based on both PEO and NaCMC may be due to a chemical bond(i.e. ionic/electrostatic intermolecular interaction) between amine group of the cationic drug and carboxyl group of the anionic polymer, leading to a formation of a new type/form of the active (i.e. salt) with sustained release pattern
    corecore