14 research outputs found

    Identification of a single nucleotide change in a mutant gene for hypoxanthine-guanine phosphoribosyltransferase (HPRT Ann Arbor)

    Full text link
    HPRT Ann Arbor is a variant of hypoxanthine (guanine) phosphoribosyl-transferase (HPRT: EC 2.4.2.8), which was identified in two brothers with hyperuricemia and nephrolithiasis. In previous studies, this mutant enzyme was characterized by an increased K m for both substrates, a normal V max , a decreased intracellular concentration of enzyme protein, a normal subunit molecular weight and an acidic isoelectric point under native isoelectric focusing conditions. We have cloned a full-length cDNA for HPRT Ann Arbor and determined its complete nucleotide sequence. A single nucleotide change (T→G) at nucleotide position 396 has been identified. This transversion predicts an amino acid substitution from isoleucine (ATT) to methionine (ATG) in codon 132, which is located within the putative 5′-phosphoribosyl-1-pyrophosphate (PRPP)-binding site of HPRT.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47622/1/439_2004_Article_BF00291707.pd

    Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A

    No full text
    Cellulosomes are efficient cellulose-degradation systems produced by selected anaerobic bacteria. This multi-enzyme complex is assembled from a group of cellulases attached to a protein scaffold termed scaffoldin, mediated by a high-affinity protein–protein interaction between the enzyme-borne dockerin module and the cohesin module of the scaffoldin. The enzymatic complex is attached as a whole to the cellulosic substrate via a cellulose-binding module (CBM) on the scaffoldin subunit. In previous works, we have employed a synthetic biology approach to convert several of the free cellulases of the aerobic bacterium, Thermobifida fusca, into the cellulosomal mode by replacing each of the enzymes’ CBM with a dockerin. Here we show that although family six enzymes are not a part of any known cellulosomal system, the two family six enzymes of the T. fusca system (endoglucanase Cel6A and exoglucanase Cel6B) can be converted to work as cellulosomal enzymes. Indeed, the chimaeric dockerin-containing family six endoglucanase worked well as a cellulosomal enzyme, and proved to be more efficient than the parent enzyme when present in designer cellulosomes. In stark contrast, the chimaeric family six exoglucanase was markedly less efficient than the wild-type enzyme when mixed with other T. fusca cellulases, thus indicating its incompatibility with the cellulosomal mode of action
    corecore