2 research outputs found

    Change Actions: Models of Generalised Differentiation

    Full text link
    Cai et al. have recently proposed change structures as a semantic framework for incremental computation. We generalise change structures to arbitrary cartesian categories and propose the notion of change action model as a categorical model for (higher-order) generalised differentiation. Change action models naturally arise from many geometric and computational settings, such as (generalised) cartesian differential categories, group models of discrete calculus, and Kleene algebra of regular expressions. We show how to build canonical change action models on arbitrary cartesian categories, reminiscent of the F\`aa di Bruno construction

    Change actions: models of generalised differentiation

    No full text
    Change structures, introduced by Cai et al., have recently been proposed as a semantic framework for incremental computation. We generalise change actions, an alternative to change structures, to arbitrary cartesian categories and propose the notion of change action model as a categorical model for (higher-order) generalised differentiation. Change action models naturally arise from many geometric and computational settings, such as (generalised) cartesian differential categories, group models of discrete calculus, and Kleene algebra of regular expressions. We show how to build canonical change action models on arbitrary cartesian categories, reminiscent of the Fàa di Bruno construction
    corecore