2 research outputs found
Change Actions: Models of Generalised Differentiation
Cai et al. have recently proposed change structures as a semantic framework
for incremental computation. We generalise change structures to arbitrary
cartesian categories and propose the notion of change action model as a
categorical model for (higher-order) generalised differentiation. Change action
models naturally arise from many geometric and computational settings, such as
(generalised) cartesian differential categories, group models of discrete
calculus, and Kleene algebra of regular expressions. We show how to build
canonical change action models on arbitrary cartesian categories, reminiscent
of the F\`aa di Bruno construction
Change actions: models of generalised differentiation
Change structures, introduced by Cai et al., have recently been proposed as a semantic framework for incremental computation. We generalise change actions, an alternative to change structures, to arbitrary cartesian categories and propose the notion of change action model as a categorical model for (higher-order) generalised differentiation. Change action models naturally arise from many geometric and computational settings, such as (generalised) cartesian differential categories, group models of discrete calculus, and Kleene algebra of regular expressions. We show how to build canonical change action models on arbitrary cartesian categories, reminiscent of the FÃ a di Bruno construction