40 research outputs found

    Benchmark thermochemistry of the C_nH_{2n+2} alkane isomers (n=2--8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria

    Full text link
    The thermochemistry of linear and branched alkanes with up to eight carbons has been reexamined by means of W4, W3.2lite and W1h theories. `Quasi-W4' atomization energies have been obtained via isodesmic and hypohomodesmotic reactions. Our best atomization energies at 0 K (in kcal/mol) are: 1220.04 n-butane, 1497.01 n-pentane, 1774.15 n-hexane, 2051.17 n-heptane, 2328.30 n-octane, 1221.73 isobutane, 1498.27 isopentane, 1501.01 neopentane, 1775.22 isohexane, 1774.61 3-methylpentane, 1775.67 diisopropyl, 1777.27 neohexane, 2052.43 isoheptane, 2054.41 neoheptane, 2330.67 isooctane, and 2330.81 hexamethylethane. Our best estimates for ΔHf,298K\Delta H^\circ_{f,298K} are: -30.00 n-butane, -34.84 n-pentane, -39.84 n-hexane, -44.74 n-heptane, -49.71 n-octane, -32.01 isobutane, -36.49 isopentane, -39.69 neopentane, -41.42 isohexane, -40.72 3-methylpentane, -42.08 diisopropyl, -43.77 neohexane, -46.43 isoheptane, -48.84 neoheptane, -53.29 isooctane, and -53.68 hexamethylethane. These are in excellent agreement (typically better than 1 kJ/mol) with the experimental heats of formation at 298 K obtained from the CCCBDB and/or NIST Chemistry WebBook databases. However, at 0 K a large discrepancy between theory and experiment (1.1 kcal/mol) is observed for only neopentane. This deviation is mainly due to the erroneous heat content function for neopentane used in calculating the 0 K CCCBDB value. The thermochemistry of these systems, especially of the larger alkanes, is an extremely difficult test for density functional methods. A posteriori corrections for dispersion are essential. Particularly for the atomization energies, the B2GP-PLYP and B2K-PLYP double-hybrids, and the PW6B95 hybrid-meta GGA clearly outperform other DFT functionals.Comment: (J. Phys. Chem. A, in press
    corecore