22 research outputs found

    Heat Acclimation Following Heat Acclimatization Elicits Additional Physiological Improvements in Male Endurance Athletes

    No full text
    The purpose of this study was to assess the effectiveness of heat acclimatization (HAz) followed by heat acclimation (HA) on physiological adaptations. 25 male endurance athletes (age 36 ± 12 y, height 178.8 ± 6.39 cm, body mass 73.03 ± 8.97 kg, and VO2peak 57.5 ± 7.0 mL·kg−1·min−1) completed HAz and HA. HAz was 3 months of self-directed summer training. In the laboratory, a 5-day HA prescribed exercise to target a hyperthermic zone (HZHA) of Trec between 38.50 and 39.75 °C for 60 min. Exercise trials were 60 min of running (59% ± 2% VO2peak) in an environmental chamber (wet bulb globe temperature 29.53 ± 0.63 °C) and administered at: baseline, post-HAz, and post-HAz+HA. Measured variables included internal body temperature (Trec), heart rate (HR), and sweat rate (SR). Repeated measure ANOVAs and post hoc comparisons were used to assess statistically significant (p < 0.05) differences. Trec was lower post-HAz+HA (38.03 ± 0.39 °C) than post-HAz (38.25 ± 0.42 °C, p = 0.009) and baseline (38.29 ± 0.37 °C, p = 0.005). There were no differences between baseline and post-HAz (p = 0.479) in Trec. HR was lower post-HAz (143 ± 12 bpm, p = 0.002) and post-HAz+HA (134 ± 11 bpm, p < 0.001) than baseline (138 ± 14 bpm). HR was lower post-HAz+HA than post-HAz (p = 0.013). SR was higher post-HAz+HA (1.93 ± 0.47 L·h−1) than post-HAz (1.76 ± 0.43 L·h−1, p = 0.027). Combination HAz and HA increased physiological outcomes above HAz. This method can be used to improve performance and safety in addition to HAz alone
    corecore