1,010 research outputs found

    Summary of results and conclusions based on analysis of volume imaging and high spectral resolution lidar data acquired during FIRE phase 1, part 1

    Get PDF
    The collection of long term global statistics on cloud cover may be most easily accomplished with satellite based observations; however, measurements derived from passive satellite retrieval methods must be calibrated and verified by in situ or ground based remote sensor observations. Verification is not straight forward, however, because the highly variable nature of cloud altitude, morphology, and optical characteristics complicates the scaling of point measurements to satellite footprint sized areas. This is particularly evident for cirrus clouds which may be organized on horizontal scales of 10's of meters to 8 km or more, and have optical depths ranging from less than .003 to greater than 3. Cirrus clouds can strongly influence earths' radiative balance, but, because they are often transmissive, cirrus clouds are difficult to detect and characterize from satellite measurements. Because of its precise ranging capabilities, spatial resolution and sensitivity, lidar observations have played an important role in the detection, depiction, and characterization of cirrus clouds. Some of the characteristics of cirrus clouds are summarized which observed the High Spectral Resolution and Volume Imaging Lidars during the phase 1 IFO and ETO periods

    Summary of results and conclusions based on analysis of volume imaging and high spectral resolution lidar data acquired during FIRE phase 1, part 2

    Get PDF
    Since the fall of 1986, cirrus clouds were observed with backscatter cross sections ranging from less than 1 x 10(exp -7) to 4.2 x 10(exp -5)m/sr, optical thicknesses ranging from less than .003 to greater than 2.7, and bulk average backscatter phase functions from .02 to .065/sr. Cirrus cloud structures were recorded ranging in vertical extent from 0.1 to 8 km, having horizontal scales from 10's of meters to 266 km, and exhibiting aspect ratios of from 1:5 to 1:100. The altitude relationship between cloud top and bottom boundaries and the optical center of the cloud is influenced by the type of formation observed. Cirrus morphology and generation processes appear to be related to the wind field. The high spectral resolution lidar (HSRL) was adapted to the task of cirrus cloud optical property measurement. The HSRL data reported were collected with the CuCl2 transmitter producing 50 mW of output power, achieving eye safe, direct optical depth and backscatter cross section measurements with 10 minute averaging times

    Interpretation of the optical and morphological properties of Cirrus clouds from lidar measurements

    Get PDF
    Lidar measurements can provide a great deal of information about the structure, location, and scattering properties of cirrus clouds. However, caution must be used when interpreting raw lidar backscatter profiles in terms of relative or absolute extinction distribution, internal cloud structure, and, at times, cloud location. The problem arises because the signal measured from a range by any monostatic lidar system depends on the backscatter cross section at that range and the 2-way optical thickness to the scattering volume. Simple lidar systems, however, produce only one measurement of attenuated backscatter from each range. The general FIRE research community is given aid in interpretation of lidar measurements, and the special capabilities of the High Spectral Resolution Lidar (HSRL) is explained. Some examples are given of conditions under which direct interpretation of cirrus cloud morphology from simple lidar profiles could be misleading

    Optical and morphological properties of Cirrus clouds determined by the high spectral resolution lidar during FIRE

    Get PDF
    Cirrus clouds reflect incoming solar radiation and trap outgoing terrestrial radiation; therefore, accurate estimation of the global energy balance depends upon knowledge of the optical and physical properties of these clouds. Scattering and absorption by cirrus clouds affect measurements made by many satellite-borne and ground based remote sensors. Scattering of ambient light by the cloud, and thermal emissions from the cloud can increase measurement background noise. Multiple scattering processes can adversely affect the divergence of optical beams propagating through these clouds. Determination of the optical thickness and the vertical and horizontal extent of cirrus clouds is necessary to the evaluation of all of these effects. Lidar can be an effective tool for investigating these properties. During the FIRE cirrus IFO in Oct. to Nov. 1986, the High Spectral Resolution Lidar (HSRL) was operated from a rooftop site on the campus of the University of Wisconsin at Madison, Wisconsin. Approximately 124 hours of fall season data were acquired under a variety of cloud optical thickness conditions. Since the IFO, the HSRL data set was expanded by more than 63.5 hours of additional data acquired during all seasons. Measurements are presented for the range in optical thickness and backscattering phase function of the cirrus clouds, as well as contour maps of extinction corrected backscatter cross sections indicating cloud morphology. Color enhanced images of range-time indicator (RTI) displays a variety of cirrus clouds with approximately 30 sec time resolution are presented. The importance of extinction correction on the interpretation of cloud height and structure from lidar observations of optically thick cirrus are demonstrated

    A Walking Silicon Robot

    Get PDF
    The goal of this project was to design and implement a MEMS process for the creation of a walking silicon robot using the equipment available at RIT. An attempt was carried out to create a mobility system based on the thermal expansion of polyimide joints as demonstrated by Ebefors. The designed process was successfully implemented through the oxidation of the joint surfaces. Issues with the Al resistor and polyimide lithography prevented the successful completion of the rest of the process

    The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cloud Optical Properties Determined by High Spectral Resolution Lidar

    Get PDF
    During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension ratios of 1:5-1:1

    Comparative analysis of 2D and 3D models of turbulent natural convection and thermal surface radiation in closed areas

    Get PDF
    Turbulent natural convection with surface thermal radiation in air-filled enclosures has been investigated. The equations of conservation of mass, momentum and energy are solved using both finite difference and control volume methods. It should be noted that the working medium is Newtonian and heat conducting fluid, where the Boussinesq approximation is valid. The walls are supposed to be gray, diffuse emitters and reflectors of radiation. The left and right surfaces of the enclosure are isothermal walls, while other surfaces are adiabatic walls. The considered fluid flow is turbulent. The main aim of the present research is to compare the heat transfer process in 2D and 3D enclosures. Detailed results including flow profiles, temperature fields, and average Nusselt numbers have been presented

    Valence and Motivation as Predictors of Student Time Use in Everyday Life: An Experience Sampling Study

    Get PDF
    Koudela-Hamila S, Grund A, Santangelo P, Ebner-Priemer UW. Valence and Motivation as Predictors of Student Time Use in Everyday Life: An Experience Sampling Study. FRONTIERS IN PSYCHOLOGY. 2019;10: 1430.Popular descriptions of studying frequency show remarkable discrepancies: students complain about their workload, and alumni describe freedom and pleasure. Unfortunately, empirical evidence on student time use is sparse. To investigate time use and reveal contributing psychological factors, we conducted an e-diary study. One hundred fifty-four students reported their time use and valence hourly over 7 days, both at the start of the semester and during their examination period. Motivational problems, social support and self-control were assessed once via questionnaires. Whereas the mean academic time use was in the expected range, the between-subject differences were substantial. We used multilevel modeling to separately analyze the within- and between-subject associations of valence as within factor and time use and social support, self-control, and motivation as between factors and time use. The analyses revealed the importance of affective factors on a within-subject level. Before studying, valence was already low, and it deteriorated further during studying. As expected at the between-subject level, motivational problems were related to less time studying, whereas surprisingly, self-control had no effect. The findings at the start of the semester were replicated in the examination period

    Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation

    Get PDF
    Plakophilins are proteins of the armadillo family that function in embryonic development and in the adult, and when mutated can cause disease. We have ablated the plakophilin 2 gene in mice. The resulting mutant mice exhibit lethal alterations in heart morphogenesis and stability at mid-gestation (E10.5–E11), characterized by reduced trabeculation, disarrayed cytoskeleton, ruptures of cardiac walls, and blood leakage into the pericardiac cavity. In the absence of plakophilin 2, the cytoskeletal linker protein desmoplakin dissociates from the plaques of the adhering junctions that connect the cardiomyocytes and forms granular aggregates in the cytoplasm. By contrast, embryonic epithelia show normal junctions. Thus, we conclude that plakophilin 2 is important for the assembly of junctional proteins and represents an essential morphogenic factor and architectural component of the heart
    corecore