36,558 research outputs found
Towards the timely detection of toxicants
We address the problem of enhancing the sensitivity of biosensors to the
influence of toxicants, with an entropy method of analysis, denoted as
CASSANDRA, recently invented for the specific purpose of studying
non-stationary time series. We study the specific case where the toxicant is
tetrodotoxin. This is a very poisonous substance that yields an abrupt drop of
the rate of spike production at t approximatively 170 minutes when the
concentration of toxicant is 4 nanomoles. The CASSANDRA algorithm reveals the
influence of toxicants thirty minutes prior to the drop in rate at a
concentration of toxicant equal to 2 nanomoles. We argue that the success of
this method of analysis rests on the adoption of a new perspective of
complexity, interpreted as a condition intermediate between the dynamic and the
thermodynamic state.Comment: 6 pages and 3 figures. Accepted for publication in the special issue
of Chaos Solitons and Fractal dedicated to the conference "Non-stationary
Time Series: A Theoretical, Computational and Practical Challenge", Center
for Nonlinear Science at University of North Texas, from October 13 to
October 19, 2002, Denton, TX (USA
MEG sensor and source measures of visually induced gamma-band oscillations are highly reliable
High frequency brain oscillations are associated with numerous cognitive and behavioral processes. Non-invasive measurements using electro-/magnetoencephalography (EEG/MEG) have revealed that high frequency neural signals are heritable and manifest changes with age as well as in neuropsychiatric illnesses. Despite the extensive use of EEG/MEG-measured neural oscillations in basic and clinical research, studies demonstrating testâretest reliability of power and frequency measures of neural signals remain scarce. Here, we evaluated the testâretest reliability of visually induced gamma (30â100 Hz) oscillations derived from sensor and source signals acquired over two MEG sessions. The study required participants (N = 13) to detect the randomly occurring stimulus acceleration while viewing a moving concentric grating. Sensor and source MEG measures of gamma-band activity yielded comparably strong reliability (average intraclass correlation, ICC = 0.861). Peak stimulus-induced gamma frequency (53â72 Hz) yielded the highest measures of stability (ICCsensor = 0.940; ICCsource = 0.966) followed by spectral signal change (ICCsensor = 0.890; ICCsource = 0.893) and peak frequency bandwidth (ICCsensor = 0.856; ICCsource = 0.622). Furthermore, source-reconstruction significantly improved signal-to-noise for spectral amplitude of gamma activity compared to sensor estimates. Our assessments highlight that both sensor and source derived estimates of visually induced gamma-band oscillations from MEG signals are characterized by high testâretest reliability, with source derived oscillatory measures conferring an improvement in the stability of peak-frequency estimates. Importantly, our finding of high testâretest reliability supports the feasibility of pharma-MEG studies and longitudinal aging or clinical studies
Extraction of hidden information by efficient community detection in networks
Currently, we are overwhelmed by a deluge of experimental data, and network
physics has the potential to become an invaluable method to increase our
understanding of large interacting datasets. However, this potential is often
unrealized for two reasons: uncovering the hidden community structure of a
network, known as community detection, is difficult, and further, even if one
has an idea of this community structure, it is not a priori obvious how to
efficiently use this information. Here, to address both of these issues, we,
first, identify optimal community structure of given networks in terms of
modularity by utilizing a recently introduced community detection method.
Second, we develop an approach to use this community information to extract
hidden information from a network. When applied to a protein-protein
interaction network, the proposed method outperforms current state-of-the-art
methods that use only the local information of a network. The method is
generally applicable to networks from many areas.Comment: 17 pages, 2 figures and 2 table
Photodiagnostics of turbulent flows using laser-induced fluorescence
An optical probe technique that will allow remote measurements of temperature (and density), along with their time dependent fluctuations, to be made in a supersonic turbulent wind tunnel flow was developed. Laser-induced fluorescence from nitric oxide which was seeded into the flowing gas medium (nitrogen) at low concentrations was used. The fluorescence emission intensity following laser excitation of the nitric oxide (NO) ground state rotational levels is then related to thermodynamic quantities of the bulk fluid
Self-phase-locked frequency-by-two divider OPO with a residual fractional frequency instability of 8.1O(-18)
We directly measure the phase difference between the subharmonic waves of a self-phase-locked frequency by-2-divider OPO using a phase-sensitive detector scheme. The relative frequency instability of frequency division by 2 is measured to be 8.10(-18
Two-pion exchange potential and the amplitude
We discuss the two-pion exchange potential which emerges from a box diagram
with one nucleon (the spectator) restricted to its mass shell, and the other
nucleon line replaced by a subtracted, covariant scattering amplitude
which includes , Roper, and isobars, as well as contact terms
and off-shell (non-pole) dressed nucleon terms. The amplitude satisfies
chiral symmetry constraints and fits data below 700 MeV pion
energy. We find that this TPE potential can be well approximated by the
exchange of an effective sigma and delta meson, with parameters close to the
ones used in one-boson-exchange models that fit data below the pion
production threshold.Comment: 9 pages (RevTex) and 7 postscript figures, in one uuencoded gzipped
tar fil
- âŠ