130 research outputs found
Toward printing molecular nanostructures from microstructured samples in ultrahigh vacuum
Transferring molecular nanostructures from one surface to another in ultrahigh vacuum (UHV) by mechanical contact might be a possible route to avoid the severe limitations of in situ molecular synthesis on technologically relevant template surfaces. Here, transfer printing in UHV of molecular structures between metal surfaces is investigated by a combination of scanning tunneling microscopy and scanning electron microscopy/energy dispersive x-ray spectroscopy. The authors present the complete procedure of the printing and characterization process. Microstructured Au-coated MoSâ samples exhibiting a periodic pillar structure are used as stamp surfaces with Au(111) single crystals as target surface. Polymers of 1,3,5-tris(4-bromophenyl)benzene molecules and graphene nanoribbons with an armchair edge structure are grown on the pillars of the stamp surface. After bringing the two surfaces in mechanical contact, the transferred material is found on the target while decapping occurs on the stamp surface. Polymer structures are probably buried under the transferred stamp material, and in rare cases, evidence for molecular structures is found in their vicinity
Anti-Transforming Growth Factor ÎČ IgG Elicits a Dual Effect on Calcium Oxalate Crystallization and Progressive Nephrocalcinosis-Related Chronic Kidney Disease
Crystallopathies are a heterogeneous group of diseases caused by intrinsic or environmental microparticles or crystals, promoting tissue inflammation and scarring. Certain proteins interfere with crystal formation and growth, e.g., with intrarenal calcium oxalate (CaOx) crystal formation, a common cause of kidney stone disease or nephrocalcinosis-related chronic kidney disease (CKD). We hypothesized that immunoglobulins can modulate CaOx microcrystal formation and crystal growth and that therefore, biological IgG-based drugs designed to specifically target disease modifying proteins would elicit a dual effect on the outcome of CaOx-related crystallopathies. Indeed, both the anti-transforming growth factor (TGF)beta IgG and control IgG1 antibody impaired CaOx crystallization in vitro, and decreased intrarenal CaOx crystal deposition and subsequent CKD in mice on an oxalate-rich diet compared to oxalate-fed control mice. However, the TGF beta-specific IgG antibody showed nephroprotective effects beyond those of control IgG1 and substantially reduced interstitial fibrosis as indicated by magnetic resonance imaging, silver and a-smooth muscle actin staining, RT-qPCR, and flow cytometry for pro-fibrotic macrophages. Suppressing interstitial fibrosis slowed the decline of glomerular filtration rate (GFR) compared to treatment with control IgG1 [slope of m = -8.9 vs. m = -14.5 mu l/min/100 g body weight (BW)/day, Delta = 38.3%], an increased GFR at the end of the study (120.4 vs. 42.6 mu l/min/100 g BW, Delta = 64.6%), and prolonged end stage renal disease (ESRD)-free renal survival by 10 days (Delta = 38.5%). Delayed onset of anti-TGF beta IgG from day 7 was no longer effective. Our results suggest that biological drugs can elicit dual therapeutic effects on intrinsic crystallopathies, such as anti-TGF beta IgG antibody treatment inhibits CaOx crystallization as well as interstitial fibrosis in nephrocalcinosis-related CKD
Assessing the efficacy and tolerability of PET-guided BrECADD versus eBEACOPP in advanced-stage, classical Hodgkin lymphoma (HD21): a randomised, multicentre, parallel, open-label, phase 3 trial
Background
Intensified systemic chemotherapy has the highest primary cure rate for advanced-stage, classical Hodgkin lymphoma but this comes with a cost of severe and potentially life long, persisting toxicities. With the new regimen of brentuximab vedotin, etoposide, cyclophosphamide, doxorubicin, dacarbazine, and dexamethasone (BrECADD), we aimed to improve the risk-to-benefit ratio of treatment of advanced-stage, classical Hodgkin lymphoma guided by PET after two cycles.
Methods
This randomised, multicentre, parallel, open-label, phase 3 trial was done in 233 trial sites across nine countries. Eligible patients were adults (aged â€60 years) with newly diagnosed, advanced-stage, classical Hodgkin lymphoma (ie, Ann Arbor stage III/IV, stage II with B symptoms, and either one or both risk factors of large mediastinal mass and extranodal lesions). Patients were randomly assigned (1:1) to four or six cycles (21-day intervals) of escalated doses of etoposide (200 mg/m2 intravenously on days 1â3), doxorubicin (35 mg/m2 intravenously on day 1), and cyclophosphamide (1250 mg/m2 intravenously on day 1), and standard doses of bleomycin (10 mg/m2 intravenously on day 8), vincristine (1·4 mg/m2 intravenously on day 8), procarbazine (100 mg/m2 orally on days 1â7), and prednisone (40 mg/m2 orally on days 1â14; eBEACOPP) or BrECADD, guided by PET after two cycles. Patients and investigators were not masked to treatment assignment. Hierarchical coprimary objectives were to show (1) improved tolerability defined by treatment-related morbidity and (2) non-inferior efficacy defined by progression-free survival with an absolute non-inferiority margin of 6 percentage points of BrECADD compared with eBEACOPP. An additional test of superiority of progression-free survival was to be done if non-inferiority had been established. Analyses were done by intention to treat; the treatment-related morbidity assessment required documentation of at least one chemotherapy cycle. This trial was registered at ClinicalTrials.gov (NCT02661503).
Findings
Between July 22, 2016, and Aug 27, 2020, 1500 patients were enrolled, of whom 749 were randomly assigned to BrECADD and 751 to eBEACOPP. 1482 patients were included in the intention-to-treat analysis. The median age of patients was 31 years (IQR 24â42). 838 (56%) of 1482 patients were male and 644 (44%) were female. Most patients were White (1352 [91%] of 1482). Treatment-related morbidity was significantly lower with BrECADD (312 [42%] of 738 patients) than with eBEACOPP (430 [59%] of 732 patients; relative risk 0·72 [95% CI 0·65â0·80]; p<0·0001). At a median follow-up of 48 months, BrECADD improved progression-free survival with a hazard ratio of 0·66 (0·45â0·97; p=0·035); 4-year progression-free survival estimates were 94·3% (95% CI 92·6â96·1) for BrECADD and 90·9% (88·7â93·1) for eBEACOPP. 4-year overall survival rates were 98·6% (97·7â99·5) and 98·2% (97·2â99·3), respectively.
Interpretation
BrECADD guided by PET after two cycles is better tolerated and more effective than eBEACOPP in first-line treatment of adult patients with advanced-stage, classical Hodgkin lymphoma
Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation
Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease. Cytoplasmic fused in sarcoma (FUS) aggregates are pathological hallmarks of FUS-ALS. Proper shuttling between the nucleus and cytoplasm is essential for physiological cell function. However, the initial event in the pathophysiology of FUS-ALS remains enigmatic. Using human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs), we show that impairment of poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response (DDR) signaling due to mutations in the FUS nuclear localization sequence (NLS) induces additional cytoplasmic FUS mislocalization which in turn results in neurodegeneration and FUS aggregate formation. Our work suggests that a key pathophysiologic event in ALS is upstream of aggregate formation. Targeting DDR signaling could lead to novel therapeutic routes for ameliorating ALS
Controlled manipulation of single atoms and small molecules using the scanning tunnelling microscope
ALONSO, ELOY Y SRA. [Material grĂĄfico]
Copia digital. Madrid : Ministerio de EducaciĂłn, Cultura y Deporte, 201
Voltage-dependent conductance of a single graphene nanoribbon
Graphene nanoribbons could potentially be used to create molecular wires with tailored conductance properties. However, understanding charge transport through a single molecule requires length-dependent conductance measurements and a systematic variation of the electrode potentials relative to the electronic states of the molecule1, 2. Here, we show that the conductance properties of a single molecule can be correlated with its electronic states. Using a scanning tunnelling microscope, the electronic structure of a long and narrow graphene nanoribbon, which is adsorbed on a Au(111) surface, is spatially mapped and its conductance then measured by lifting the molecule off the surface with the tip of the microscope. The tunnelling decay length is measured over a wide range of bias voltages, from the localized Tamm states over the gap up to the delocalized occupied and unoccupied electronic states of the nanoribbon. We also show how the conductance depends on the precise atomic structure and bending of the molecule in the junction, illustrating the importance of the edge states and a planar geometry
- âŠ