200 research outputs found
A Precious Bequest: Contemporary Research with the WPA-CCC Collections from Moundville, Alabama *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72459/1/j.1749-6632.1981.tb28184.x.pd
Game Theoretical Interactions of Moving Agents
Game theory has been one of the most successful quantitative concepts to
describe social interactions, their strategical aspects, and outcomes. Among
the payoff matrix quantifying the result of a social interaction, the
interaction conditions have been varied, such as the number of repeated
interactions, the number of interaction partners, the possibility to punish
defective behavior etc. While an extension to spatial interactions has been
considered early on such as in the "game of life", recent studies have focussed
on effects of the structure of social interaction networks.
However, the possibility of individuals to move and, thereby, evade areas
with a high level of defection, and to seek areas with a high level of
cooperation, has not been fully explored so far. This contribution presents a
model combining game theoretical interactions with success-driven motion in
space, and studies the consequences that this may have for the degree of
cooperation and the spatio-temporal dynamics in the population. It is
demonstrated that the combination of game theoretical interactions with motion
gives rise to many self-organized behavioral patterns on an aggregate level,
which can explain a variety of empirically observed social behaviors
Molecular Dynamics for Fermions
The time-dependent variational principle for many-body trial states is used
to discuss the relation between the approaches of different molecular dynamics
models to describe indistinguishable fermions. Early attempts to include
effects of the Pauli principle by means of nonlocal potentials as well as more
recent models which work with antisymmetrized many-body states are reviewed
under these premises.
Keywords: Many-body theory; Fermion system; Molecular dynamics; Wave-packet
dynamics; Time-dependent variational principle; Statistical properties;
Canonical ensemble; Ergodicity; Time averagingComment: 97 pages, 13 postscript figures. To be published in July 2000 issue
of Reviews of Modern Physics. More information at http://www-aix.gsi.de/~fmd
Biotechnology and the Politics of Truth : From the Green Revolution to an Evergreen Revolution
This paper investigates why and how issues around the diffusion of GM technologies and products to developing countries have become so central to a debate which has shifted away from technical issues of cost-benefit optimisation in a context of uniform mass production and consumption in the North, to the moral case for GM crops to feed the hungry and aid âdevelopmentâ in the South. Using comparison between agricultural biotechnology and the âGreen Revolutionâ as a cross cutting theme, the contributions of this paper are threefold. Firstly, by analysing biotechnology as a set of overlapping frames within a discursive formation, four frames are identified which summarise key challenges presented by biotechnology era. Secondly, the use of Foucault's concept of bio-power to synthesise key themes from the frame analysis illuminates the ârevolutionaryâ nature of the biotech revolution. Thirdly, the potential of actor-network theory to provide a tools for the empirical study of processes of (re)negotiation of nature/society relations in the context of agricultural biotechnology controversies is explored
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, OâMalley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. âMacrobeâ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes â the dominant life form on the planet, both now and throughout evolutionary history â will transform some of the philosophy of biologyâs standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology â including biofilm formation, chemotaxis, quorum sensing and gene transfer â that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
- âŠ