1,593 research outputs found

    Weak Long-Ranged Casimir Attraction in Colloidal Crystals

    Full text link
    We investigate the influence of geometric confinement on the free energy of an idealized model for charge-stabilized colloidal suspensions. The mean-field Poisson-Boltzmann formulation for this system predicts pure repulsion among macroionic colloidal spheres. Fluctuations in the simple ions' distribution provide a mechanism for the macroions to attract each other at large separations. Although this Casimir interaction is long-ranged, it is too weak to influence colloidal crystals' dynamics.Comment: 5 pages 2 figures ReVTe

    Colloidal transport through optical tweezer arrays

    Full text link
    Viscously damped particles driven past an evenly spaced array of potential energy wells or barriers may become kinetically locked in to the array, or else may escape from the array. The transition between locked-in and free-running states has been predicted to depend sensitively on the ratio between the particles' size and the separation between wells. This prediction is confirmed by measurements on monodisperse colloidal spheres driven through arrays of holographic optical traps.Comment: 4 pages, 4 figure

    Observation of Flux Reversal in a Symmetric Optical Thermal Ratchet

    Full text link
    We demonstrate that a cycle of three holographic optical trapping patterns can implement a thermal ratchet for diffusing colloidal spheres, and that the ratchet-driven transport displays flux reversal as a function of the cycle frequency and the inter-trap separation. Unlike previously described ratchet models, the approach we describe involves three equivalent states, each of which is locally and globally spatially symmetric, with spatiotemporal symmetry being broken by the sequence of states.Comment: 4 pages, 2 figures, submitted for publication in Physical Review Letter

    Correlated particle dynamics in concentrated quasi-two-dimensional suspensions

    Full text link
    We investigate theoretically and experimentally how the hydrodynamically correlated lateral motion of particles in a suspension confined between two surfaces is affected by the suspension concentration. Despite the long range of the correlations (decaying as 1/r^2 with the inter-particle distance r), the concentration effect is present only at short inter-particle distances for which the static pair correlation is nonuniform. This is in sharp contrast with the effect of hydrodynamic screening present in unconfined suspensions, where increasing the concentration changes the prefactor of the large-distance correlation.Comment: 13 page

    Melting of Quasi-Two-Dimensional Charge Stripes in La5/3Sr1/3NiO4

    Full text link
    Commensurability effects for nickelates have been studied by the first neutron experiments on La5/3Sr1/3NiO4. Upon cooling, this system undergoes three successive phase transitions associated with quasi-two-dimensional (2D) commensurate charge and spin stripe ordering in the NiO2_2 planes. The two lower temperature phases (denoted as phase II and III) are stripe lattice states with quasi-long-range in-plane charge correlation. When the lattice of 2D charge stripes melts, it goes through an intermediate glass state (phase I) before becoming a disordered liquid state. This glass state shows short-range charge order without spin order, and may be called a "stripe glass" which resembles the hexatic/nematic state in 2D melting.Comment: 10 pages, RevTex, 4 figures available on request to [email protected]

    Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface

    Get PDF
    We describe direct imaging measurements of the collective and relative diffusion of two colloidal spheres near a flat plate. The bounding surface modifies the spheres' dynamics, even at separations of tens of radii. This behavior is captured by a stokeslet analysis of fluid flow driven by the spheres' and wall's no-slip boundary conditions. In particular, this analysis reveals surprising asymmetry in the normal modes for pair diffusion near a flat surface.Comment: 4 pages, 4 figure

    Elastic Theory of pinned flux lattices

    Full text link
    The pinning of flux lattices by weak impurity disorder is studied in the absence of free dislocations using both the gaussian variational method and, to O(ϵ=4−d)O(\epsilon=4-d), the functional renormalization group. We find universal logarithmic growth of displacements for 2<d<42<d<4: ⟨u(x)−u(0)⟩2‾∼Adlog⁡∣x∣\overline{\langle u(x)-u(0) \rangle ^2}\sim A_d \log|x| and persistence of algebraic quasi-long range translational order. When the two methods can be compared they agree within 10%10\% on the value of AdA_d. We compute the function describing the crossover between the ``random manifold'' regime and the logarithmic regime. This crossover should be observable in present decoration experiments.Comment: 12 pages, Revtex 3.

    On the geometry of four qubit invariants

    Get PDF
    The geometry of four-qubit entanglement is investigated. We replace some of the polynomial invariants for four-qubits introduced recently by new ones of direct geometrical meaning. It is shown that these invariants describe four points, six lines and four planes in complex projective space CP3{\bf CP}^3. For the generic entanglement class of stochastic local operations and classical communication they take a very simple form related to the elementary symmetric polynomials in four complex variables. Moreover, their magnitudes are entanglement monotones that fit nicely into the geometric set of nn-qubit ones related to Grassmannians of ll-planes found recently. We also show that in terms of these invariants the hyperdeterminant of order 24 in the four-qubit amplitudes takes a more instructive form than the previously published expressions available in the literature. Finally in order to understand two, three and four-qubit entanglement in geometric terms we propose a unified setting based on CP3{\bf CP}^3 furnished with a fixed quadric.Comment: 19 page

    Retrospective examination of injuries and physical fitness during Federal Bureau of Investigation new agent training

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A retrospective examination was conducted of injuries, physical fitness, and their association among Federal Bureau of Investigation (FBI) new agent trainees.</p> <p>Methods</p> <p>Injuries and activities associated with injuries were obtained from a review of medical records in the medical clinic that served the new agents. A physical fitness test (PFT) was administered at Weeks 1, 7 and 14 of the 17-week new agent training course. The PFT consisted of push-ups, sit-ups, pull-ups, a 300-meter sprint, and a 1.5-mile run. Injury data were available from 2000 to 2008 and fitness data were available from 2004 to early 2009.</p> <p>Results</p> <p>During the survey period, 37% of men and 44% of women experienced one or more injuries during the new agent training course (risk ratio (women/men) = 1.18, 95% confidence interval = 1.07-1.31). The most common injury diagnoses were musculoskeletal pain (not otherwise specified) (27%), strains (11%), sprains (10%), contusions (9%), and abrasions/lacerations (9%). Activities associated with injury included defensive tactics training (48%), physical fitness training (26%), physical fitness testing (6%), and firearms training (6%). Over a 6-year period, there was little difference in performance of push-ups, sit-ups, pull-ups, or the 300-meter sprint; 1.5-mile run performance was higher in recent years. Among both men and women, higher injury incidence was associated with lower performance on any of the physical fitness measures.</p> <p>Conclusion</p> <p>This investigation documented injury diagnoses, activities associated with injury, and changes in physical fitness, and demonstrated that higher levels of physical fitness were associated with lower injury risk.</p
    • …
    corecore