35,255 research outputs found
Inversion of polarimetric data from eclipsing binaries
We describe a method for determining the limb polarization and limb darkening
of stars in eclipsing binary systems, by inverting photometric and polarimetric
light curves.
Because of the ill-conditioning of the problem, we use the Backus-Gilbert
method to control the resolution and stability of the recovered solution, and
to make quantitative estimates of the maximum accuracy possible. Using this
method we confirm that the limb polarization can indeed be recovered, and
demonstrate this with simulated data, thus determining the level of
observational accuracy required to achieve a given accuracy of reconstruction.
This allows us to set out an optimal observational strategy, and to critcally
assess the claimed detection of limb polarization in the Algol system.
The use of polarization in stars has been proposed as a diagnostic tool in
microlensing surveys by Simmons et al. (1995), and we discuss the extension of
this work to the case of microlensing of extended sources.Comment: 10pp, 5 figures. To appear in A&
Advanced grid authorisation using semantic technologies - AGAST
Collaborative research requires flexible and fine-grained access control, beyond the common all-or-nothing access based purely on authentication. Existing systems can be hard to use, and do not lend themselves naturally to federation. We present an access-control architecture which builds on RDFs natural strength as an integration framework, which uses RDF scavenged from X.509 certificates, and policies expressed as ontologies and SPARQL queries, to provide flexible and distributed access control. We describe initial implementations
Semantic security: specification and enforcement of semantic policies for security-driven collaborations
Collaborative research can often have demands on finer-grained security that go beyond the authentication-only paradigm as typified by many e-Infrastructure/Grid based solutions. Supporting finer-grained access control is often essential for domains where the specification and subsequent enforcement of authorization policies is needed. The clinical domain is one area in particular where this is so. However it is the case that existing security authorization solutions are fragile, inflexible and difficult to establish and maintain. As a result they often do not meet the needs of real world collaborations where robustness and flexibility of policy specification and enforcement, and ease of maintenance are essential. In this paper we present results of the JISC funded Advanced Grid Authorisation through Semantic Technologies (AGAST) project (www.nesc.ac.uk/hub/projects/agast) and show how semantic-based approaches to security policy specification and enforcement can address many of the limitations with existing security solutions. These are demonstrated into the clinical trials domain through the MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project (www.nesc.ac.uk/hub/projects/votes) and the epidemiological domain through the JISC funded SeeGEO project (www.nesc.ac.uk/hub/projects/seegeo)
Recommended from our members
VIPER : a 25-MHz, 100-MIPS peak VLIW micro-processor
This paper describes the design and implementation of a very long instruction word (VLIW) microprocessor. The VIPER (VLIW integer processor) contains four pipelined functional units, and can achieve 100 MIPS peak performance at 25 MHz. The procesor is capable of performing multiway branch operations, two load/store operations and up to four ALU operations in each clock cycle, with full register file access to each functional unit. VIPER is the first VLIW microprocessor known that can achieve this level of performance. Designed in twelve months, the processor is integrated with an instruction cache controller and a data cache, requiring 450,000 transistors and a die size of 12.9 by 9.1 mm in a 1.2 ”m technology
A quantum mechanical approach to establishing the magnetic field orientation from a maser Zeeman profile
Recent comparisons of magnetic field directions derived from maser Zeeman
splitting with those derived from continuum source rotation measures have
prompted new analysis of the propagation of the Zeeman split components, and
the inferred field orientation. In order to do this, we first review differing
electric field polarization conventions used in past studies. With these
clearly and consistently defined, we then show that for a given Zeeman
splitting spectrum, the magnetic field direction is fully determined and
predictable on theoretical grounds: when a magnetic field is oriented away from
the observer, the left-hand circular polarization is observed at higher
frequency and the right-hand polarization at lower frequency. This is
consistent with classical Lorentzian derivations. The consequent interpretation
of recent measurements then raises the possibility of a reversal between the
large-scale field (traced by rotation measures) and the small-scale field
(traced by maser Zeeman splitting).Comment: 10 pages, 5 Figures, accepted for publication in MNRA
Transformative learning through university and prison partnerships: reflections from âLearning Togetherâ pedagogical practice
This paper critically discusses two London-based âLearning Togetherâ prison university partnershipsâMiddlesex University with Her Majestyâs Prison (HMP) Wandsworth and London South Bank University (LSBU) with HMP Pentonville. The paper documents how students experienced the shared classroom learning approach designed on principles of âtransformative pedagogyâ, and how students interpret their personal development and the knowledge and skills gained as a result. We share the steps taken to bring the learning together pedagogical philosophy to life and use evidence from module evaluation findings and critical reflections to demonstrate the transformations that happen. We interpret our findings through the lens of a transformative ripples model. In addition to exploring personal transformation, the wider transformations that occur within the public institutions at the centre of these collaborationsâthe prisons and the universities âare discussed. We argue that for prison and university partnerships to be truly effective, they must embed transformative pedagogic practices at their heart, ensuring the âhowâwe teach is as important, and deliberately considered, as the âwhatâ we teach
Recommended from our members
VLSI design of the tiny RISC microprocessor
This report describes the Tiny RISC microprocessor designed at UC Irvine. Tiny RISC is a 16-bit microprocessor and has a RISC-style architecture. The chip was fabricated by MOSIS [1] in a 2ÎŒm n-well CMOS technology. The processor has a cycle time of 70 ns
Rotational dynamics of a superhelix towed in a Stokes fluid
Motivated by the intriguing motility of spirochetes (helically-shaped
bacteria that screw through viscous fluids due to the action of internal
periplasmic flagella), we examine the fundamental fluid dynamics of
superhelices translating and rotating in a Stokes fluid. A superhelical
structure may be thought of as a helix whose axial centerline is not straight,
but also a helix. We examine the particular case where these two superimposed
helices have different handedness, and employ a combination of experimental,
analytic, and computational methods to determine the rotational velocity of
superhelical bodies being towed through a very viscous fluid. We find that the
direction and rate of the rotation of the body is a result of competition
between the two superimposed helices; for small axial helix amplitude, the body
dynamics is controlled by the short-pitched helix, while there is a cross-over
at larger amplitude to control by the axial helix. We find far better, and
excellent, agreement of our experimental results with numerical computations
based upon the method of Regularized Stokeslets than upon the predictions of
classical resistive force theory
- âŠ