5,346 research outputs found
Study of metallic structural design concepts for an arrow wing supersonic cruise configuration
A structural design study was made, to assess the relative merits of various metallic structural concepts and materials for an advanced supersonic aircraft cruising at Mach 2.7. Preliminary studies were made to ensure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, select structural concepts and materials, and define an efficient structural arrangement. An advanced computerized structural design system was used, in conjunction with a relatively large, complex finite element model, for detailed analysis and sizing of structural members to satisfy strength and flutter criteria. A baseline aircraft design was developed for assessment of current technology. Criteria, analysis methods, and results are presented. The effect on design methods of using the computerized structural design system was appraised, and recommendations are presented concerning further development of design tools, development of materials and structural concepts, and research on basic technology
Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration
Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values
Analytical and numerical studies of disordered spin-1 Heisenberg chains with aperiodic couplings
We investigate the low-temperature properties of the one-dimensional spin-1
Heisenberg model with geometric fluctuations induced by aperiodic but
deterministic coupling distributions, involving two parameters. We focus on two
aperiodic sequences, the Fibonacci sequence and the 6-3 sequence. Our goal is
to understand how these geometric fluctuations modify the physics of the
(gapped) Haldane phase, which corresponds to the ground state of the uniform
spin-1 chain. We make use of different adaptations of the strong-disorder
renormalization-group (SDRG) scheme of Ma, Dasgupta and Hu, widely employed in
the study of random spin chains, supplemented by quantum Monte Carlo and
density-matrix renormalization-group numerical calculations, to study the
nature of the ground state as the coupling modulation is increased. We find no
phase transition for the Fibonacci chain, while we show that the 6-3 chain
exhibits a phase transition to a gapless, aperiodicity-dominated phase similar
to the one found for the aperiodic spin-1/2 XXZ chain. Contrary to what is
verified for random spin-1 chains, we show that different adaptations of the
SDRG scheme may lead to different qualitative conclusions about the nature of
the ground state in the presence of aperiodic coupling modulations.Comment: Accepted for publication in Physical Review
Cosmologies with variable parameters and dynamical cosmon: implications on the cosmic coincidence problem
Dynamical dark energy (DE) has been proposed to explain various aspects of
the cosmological constant (CC) problem(s). For example, it is very difficult to
accept that a strictly constant Lambda-term constitutes the ultimate
explanation for the DE in our Universe. It is also hard to acquiesce in the
idea that we accidentally happen to live in an epoch where the CC contributes
an energy density value right in the ballpark of the rapidly diluting matter
density. It should perhaps be more plausible to conceive that the vacuum
energy, is actually a dynamical quantity as the Universe itself. More
generally, we could even entertain the possibility that the total DE is in fact
a mixture of vacuum energy and other dynamical components (e.g. fields, higher
order terms in the effective action etc) which can be represented collectively
by an effective entity X (dubbed the ``cosmon''). The ``cosmon'', therefore,
acts as a dynamical DE component different from the vacuum energy. While it can
actually behave phantom-like by itself, the overall DE fluid may effectively
appear as standard quintessence, or even mimic at present an almost exact CC
behavior. Thanks to the versatility of such cosmic fluid we can show that a
composite DE system of this sort (``LXCDM'') may have a key to resolving the
mysterious coincidence problem.Comment: LaTeX, 13 pages, 5 figure
Protocol for a longitudinal qualitative interview study: maintaining psychological well-being in advanced cancer - what can we learn from patients' and carers' own coping strategies?
IntroductionPeople with advanced cancer and their carers experience stress and uncertainty which affects the quality of life and physical and mental health. This study aims to understand how patients and carers recover or maintain psychological well-being by exploring the strategies employed to self-manage stress and uncertainty.Methods and analysisA longitudinal qualitative interview approach with 30 patients with advanced cancer and 30 associated family or informal carers allows the exploration of contexts, mechanisms and outcomes at an individual level. Two interviews, 4–12?weeks apart, will not only enable the exploration of individuals’ evolving coping strategies in response to changing contexts but also how patients’ and carers’ strategies inter-relate. Patient and Carer focus groups will then consider how the findings may be used in developing an intervention. Recruiting through two major tertiary cancer centres in the North West and using deliberately broad and inclusive criteria will enable the sample to capture demographic and experiential breadth.Ethics and disseminationThe research team will draw on their considerable experience to ensure that the study is sensitive to a patient and carer group, which may be considered vulnerable but still values being able to contribute its views. Public and patient involvement (PPI) is integral to the design and is evidenced by: a research advisory group incorporating patient and carers, prestudy consultations with the PPI group at one of the study sites and a user as the named applicant. The study team will use multiple methods to disseminate the findings to clinical, policy and academic audiences. A key element will be engaging health professionals in patient and carer ideas for promoting self-management of psychological well-being. The study has ethical approval from the North West Research Ethics Committee and the appropriate NHS governance clearance.RegistrationNational Institute for Health Research (NIHR) Clinical Studies Portfolio, UK Clinical Research Network (UKCRN) Study number 11725
Cosmologies with a time dependent vacuum
The idea that the cosmological term, Lambda, should be a time dependent
quantity in cosmology is a most natural one. It is difficult to conceive an
expanding universe with a strictly constant vacuum energy density, namely one
that has remained immutable since the origin of time. A smoothly evolving
vacuum energy density that inherits its time-dependence from cosmological
functions, such as the Hubble rate or the scale factor, is not only a
qualitatively more plausible and intuitive idea, but is also suggested by
fundamental physics, in particular by quantum field theory (QFT) in curved
space-time. To implement this notion, is not strictly necessary to resort to ad
hoc scalar fields, as usually done in the literature (e.g. in quintessence
formulations and the like). A "running" Lambda term can be expected on very
similar grounds as one expects (and observes) the running of couplings and
masses with a physical energy scale in QFT. Furthermore, the experimental
evidence that the equation of state of the dark energy could be evolving with
time/redshift (including the possibility that it might currently behave
phantom-like) suggests that a time-variable Lambda term (possibly accompanied
by a variable Newton's gravitational coupling G=G(t)) could account in a
natural way for all these features. Remarkably enough, a class of these models
(the "new cosmon") could even be the clue for solving the old cosmological
constant problem, including the coincidence problem.Comment: LaTeX, 15 pages, 4 figure
What is there in the black box of dark energy: variable cosmological parameters or multiple (interacting) components?
The coincidence problems and other dynamical features of dark energy are
studied in cosmological models with variable cosmological parameters and in
models with the composite dark energy. It is found that many of the problems
usually considered to be cosmological coincidences can be explained or
significantly alleviated in the aforementioned models.Comment: 6 pages, 1 figure, talk given at IRGAC2006 (Barcelona, July 11-15,
2006), to appear in J. Phys.
Effective growth of matter density fluctuations in the running LCDM and LXCDM models
We investigate the matter density fluctuations \delta\rho/\rho for two dark
energy (DE) models in the literature in which the cosmological term \Lambda is
a running parameter. In the first model, the running LCDM model, matter and DE
exchange energy, whereas in the second model, the LXCDM model, the total DE and
matter components are conserved separately. The LXCDM model was proposed as an
interesting solution to the cosmic coincidence problem. It includes an extra
dynamical component, the "cosmon" X, which interacts with the running \Lambda,
but not with matter. In our analysis we make use of the current value of the
linear bias parameter, b^2(0)= P_{GG}/P_{MM}, where P_{MM} ~
(\delta\rho/\rho)^2 is the present matter power spectrum and P_{GG} is the
galaxy fluctuation power spectrum. The former can be computed within a given
model, and the latter is found from the observed LSS data (at small z) obtained
by the 2dF galaxy redshift survey. It is found that b^2(0)=1 within a 10%
accuracy for the standard LCDM model. Adopting this limit for any DE model and
using a method based on the effective equation of state for the DE, we can set
a limit on the growth of matter density perturbations for the running LCDM
model, the solution of which is known. This provides a good test of the
procedure, which we then apply to the LXCDM model in order to determine the
physical region of parameter space, compatible with the LSS data. In this
region, the LXCDM model is consistent with known observations and provides at
the same time a viable solution to the cosmic coincidence problem.Comment: LaTeX, 38 pages, 8 figures. Version accepted in JCA
Perturbations in the relaxation mechanism for a large cosmological constant
Recently, a mechanism for relaxing a large cosmological constant (CC) has
been proposed [arxiv:0902.2215], which permits solutions with low Hubble rates
at late times without fine-tuning. The setup is implemented in the LXCDM
framework, and we found a reasonable cosmological background evolution similar
to the LCDM model with a fine-tuned CC. In this work we analyse analytically
the perturbations in this relaxation model, and we show that their evolution is
also similar to the LCDM model, especially in the matter era. Some tracking
properties of the vacuum energy are discussed, too.Comment: 18 pages, LaTeX; discussion improved, accepted by CQ
- …