2,757 research outputs found
The NASA high-speed turboprop program
Technology readiness for Mach 0.7 to 0.8 turboprop powered aircraft with the potential for fuel savings and DOC reductions of up to 30 and 15 percent respectively relative to current in-service aircraft is addressed. The areas of propeller aeroacoustics, propeller structures, turboprop installed performance, aircraft cabin environment, and turboprop engine and aircraft studies are emphasized. Large scale propeller characteristics and high speed propeller flight research tests using a modified testbed aircraft are also considered
Birational cobordism invariance of uniruled symplectic manifolds
A symplectic manifold is called {\em (symplectically) uniruled}
if there is a nonzero genus zero GW invariant involving a point constraint. We
prove that symplectic uniruledness is invariant under symplectic blow-up and
blow-down. This theorem follows from a general Relative/Absolute correspondence
for a symplectic manifold together with a symplectic submanifold. A direct
consequence is that symplectic uniruledness is a symplectic birational
invariant. Here we use Guillemin and Sternberg's notion of cobordism as the
symplectic analogue of the birational equivalence.Comment: To appear in Invent. Mat
Strengthening the Cohomological Crepant Resolution Conjecture for Hilbert-Chow morphisms
Given any smooth toric surface S, we prove a SYM-HILB correspondence which
relates the 3-point, degree zero, extended Gromov-Witten invariants of the
n-fold symmetric product stack [Sym^n(S)] of S to the 3-point extremal
Gromov-Witten invariants of the Hilbert scheme Hilb^n(S) of n points on S. As
we do not specialize the values of the quantum parameters involved, this result
proves a strengthening of Ruan's Cohomological Crepant Resolution Conjecture
for the Hilbert-Chow morphism from Hilb^n(S) to Sym^n(S) and yields a method of
reconstructing the cup product for Hilb^n(S) from the orbifold invariants of
[Sym^n(S)].Comment: Revised versio
Holomorphic anomaly equations and the Igusa cusp form conjecture
Let be a K3 surface and let be an elliptic curve. We solve the
reduced Gromov-Witten theory of the Calabi-Yau threefold for all
curve classes which are primitive in the K3 factor. In particular, we deduce
the Igusa cusp form conjecture.
The proof relies on new results in the Gromov-Witten theory of elliptic
curves and K3 surfaces. We show the generating series of Gromov-Witten classes
of an elliptic curve are cycle-valued quasimodular forms and satisfy a
holomorphic anomaly equation. The quasimodularity generalizes a result by
Okounkov and Pandharipande, and the holomorphic anomaly equation proves a
conjecture of Milanov, Ruan and Shen. We further conjecture quasimodularity and
holomorphic anomaly equations for the cycle-valued Gromov-Witten theory of
every elliptic fibration with section. The conjecture generalizes the
holomorphic anomaly equations for ellliptic Calabi-Yau threefolds predicted by
Bershadsky, Cecotti, Ooguri, and Vafa. We show a modified conjecture holds
numerically for the reduced Gromov-Witten theory of K3 surfaces in primitive
classes.Comment: 68 page
Algebraic varieties with automorphism groups of maximal rank
We confirm, to some extent, the belief that a projective variety X has the
largest number (relative to the dimension of X) of independent commuting
automorphisms of positive entropy only when X is birational to a complex torus
or a quotient of a torus. We also include an addendum to an early paper though
it is not used in the present paper.Comment: Mathematische Annalen (to appear
Enumerative geometry of Calabi-Yau 4-folds
Gromov-Witten theory is used to define an enumerative geometry of curves in
Calabi-Yau 4-folds. The main technique is to find exact solutions to moving
multiple cover integrals. The resulting invariants are analogous to the BPS
counts of Gopakumar and Vafa for Calabi-Yau 3-folds. We conjecture the 4-fold
invariants to be integers and expect a sheaf theoretic explanation.
Several local Calabi-Yau 4-folds are solved exactly. Compact cases, including
the sextic Calabi-Yau in CP5, are also studied. A complete solution of the
Gromov-Witten theory of the sextic is conjecturally obtained by the holomorphic
anomaly equation.Comment: 44 page
On the Crepant Resolution Conjecture in the Local Case
In this paper we analyze four examples of birational transformations between
local Calabi-Yau 3-folds: two crepant resolutions, a crepant partial
resolution, and a flop. We study the effect of these transformations on
genus-zero Gromov-Witten invariants, proving the
Coates-Corti-Iritani-Tseng/Ruan form of the Crepant Resolution Conjecture in
each case. Our results suggest that this form of the Crepant Resolution
Conjecture may also hold for more general crepant birational transformations.
They also suggest that Ruan's original Crepant Resolution Conjecture should be
modified, by including appropriate "quantum corrections", and that there is no
straightforward generalization of either Ruan's original Conjecture or the
Cohomological Crepant Resolution Conjecture to the case of crepant partial
resolutions. Our methods are based on mirror symmetry for toric orbifolds.Comment: 27 pages. This is a substantially revised and shortened version of my
preprint "Wall-Crossings in Toric Gromov-Witten Theory II: Local Examples";
all results contained here are also proved there. To appear in Communications
in Mathematical Physic
Time- and momentum-resolved probe of heat transport in photo-excited bismuth
We use time- and momentum-resolved x-ray scattering to study thermalization in a photo-excited thin single crystal bismuth film on sapphire. The time-resolved changes of the diffuse scattering show primarily a quasi-thermal phonon distribution that is established in less than or similar to 100 ps and that follows the time-scale of thermal transport. Ultrafast melting measurements under high laser excitation show that epitaxial regrowth of the liquid phase occurs on the time-scale of thermal transport across the bismuth-sapphire interface. (C) 2013 AIP Publishing LLC. (DOI: 10.1063/1.4804291
- …