13 research outputs found
No evidence of enhanced oxidant production in blood obtained from patients with obstructive sleep apnea
<p>Abstract</p> <p>Background</p> <p>Obstructive sleep apnea syndrome (OSAS) is a recognized risk factor for cardiovascular morbidity and mortality, perhaps due to causative exacerbations of systemic oxidative stress. Putative oxidative stress related to numerous episodes of intermittent hypoxia, may be an oxidants chief driving force in OSAS patients.</p> <p>Methods</p> <p>We assessed the resting and n-formyl-methionyl-leucyl-phenylalanine (fMLP)- induced whole blood chemiluminescence (as a measure of oxidant production by polymorphonuclear leukocytes and monocytes), ferric reducing ability of plasma (FRAP) and H<sub>2</sub>O<sub>2 </sub>generation in the whole blood of 27 untreated OSAS patients, 22 subjects after a night of CPAP therapy and 11 controls without OSAS. All of them were matched to age, BMI (body mass index) and smoking habits. All parameters were measured before and after polysomnography-controlled sleep, individual results were obtained as a mean from duplicated experiments.</p> <p>Results</p> <p>No significant differences were distinguished between evening and morning blood chemiluminescence, H<sub>2</sub>O<sub>2 </sub>activity and FRAP within and between all three study groups.</p> <p>For instance patients with untreated OSAS had similar morning and evening resting whole blood chemiluminescence (2.3 +/- 2.2 vs. 2.4 +/- 2.2 [aU·10<sup>-4 </sup>phagocytes]), total light emission after stimulation with fMLP (1790 +/- 1371 vs. 1939 +/- 1532 [aU·s·10<sup>-4 </sup>phagocytes]), as well as FRAP after 3 min. plasma incubation (602 +/- 202 vs. 671 +/- 221 [uM]). Although, in the subgroup of 11 patients with severe OSAS (apnea/hypopnea index 58 +/- 18/h and oxygen desaturation index 55 +/- 19/h), the morning vs. evening resting chemiluminescence and total light emission after stimulation with fMLP observed a propensity to elevate 2.5 +/- 2.7 vs. 1.9 +/- 1.8 [aU·10<sup>-4 </sup>phagocytes] and 1778 +/- 1442 vs. 1503 +/- 1391 [aU·s·10<sup>-4 </sup>phagocytes], respectively, these did not attain statistical significance (p > 0.05).</p> <p>Conclusion</p> <p>Our investigation exposed no evidence in the overproduction of oxidants via circulating phagocytes, once considered a culprit in the oxidative stress of OSAS patients.</p
Hsp72 and Hsp90α mRNA transcription is characterised by large, sustained changes in core temperature during heat acclimation
Increased intracellular heat shock protein-72 (Hsp72), and -90α (Hsp90α) have been implicated as important components of acquired thermotolerance, providing cytoprotection during stress. This experiment determined the physiological responses characterising increases in Hsp72 and Hsp90α mRNA on the first and tenth day of 90 min heat acclimation (in 40.2°C, 41.0% RH) or equivalent normothermic training (in 20°C, 29% RH.). Pearson’s product-moment correlation and stepwise multiple regression were performed to determine relationships between physiological [e.g. (Trec, sweat rate (SR) and heart rate (HR)] and training variables (exercise duration, exercise intensity, work done), and the leukocyte Hsp72 and Hsp90α mRNA responses via RT-QPCR (n=15). Significant (p0.05) weak (r<0.300) relationships with Hsp72 and Hsp90α mRNA. Hsp72 and Hsp90α mRNA correlates were comparable on the first and tenth day. When transcription of the related Hsp72 and Hsp90α mRNA is important, protocols should rapidly induce large, prolonged changes in core temperature