15 research outputs found

    Landscape Ecotoxicology of Coho Salmon Spawner Mortality in Urban Streams

    Get PDF
    In the Pacific Northwest of the United States, adult coho salmon (Oncorhynchus kisutch) returning from the ocean to spawn in urban basins of the Puget Sound region have been prematurely dying at high rates (up to 90% of the total runs) for more than a decade. The current weight of evidence indicates that coho deaths are caused by toxic chemical contaminants in land-based runoff to urban streams during the fall spawning season. Non-point source pollution in urban landscapes typically originates from discrete urban and residential land use activities. In the present study we conducted a series of spatial analyses to identify correlations between land use and land cover (roadways, impervious surfaces, forests, etc.) and the magnitude of coho mortality in six streams with different drainage basin characteristics. We found that spawner mortality was most closely and positively correlated with the relative proportion of local roads, impervious surfaces, and commercial property within a basin. These and other correlated variables were used to identify unmonitored basins in the greater Seattle metropolitan area where recurrent coho spawner die-offs may be likely. This predictive map indicates a substantial geographic area of vulnerability for the Puget Sound coho population segment, a species of concern under the U.S. Endangered Species Act. Our spatial risk representation has numerous applications for urban growth management, coho conservation, and basin restoration (e.g., avoiding the unintentional creation of ecological traps). Moreover, the approach and tools are transferable to areas supporting coho throughout western North America

    Ecomorphological plasticity of juvenile fall-run chinook salmon (Oncorhynchus tshawytscha) in perennial and ephemeral streams

    No full text
    In the Central Valley of California, environmental characteristics differ between perennial and ephemeral stream types and therefore present different challenges for rearing salmonids with respect to water discharge, water temperature, food availability, and habitat complexity. Body shape of juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) reared in a perennial stream environment was compared to juveniles reared in an ephemeral stream environment. Using geometric morphometrics and multivariate analyses, this study presents morphological differences of rearing juvenile Chinook salmon both within and between ephemeral and perennial stream types. We found that shape differences between stream types were primarily associated with expansion of the mid-body region relative to differences in body length. Specifically, juvenile Chinook salmon reared in the ephemeral stream expressed increased body depth dominated by dorsal-ventral elongation of the dorsal, adipose, and anal fins. Eye position and gill opercula-body insertion points also were anteriorly shifted in the juvenile body shape of the ephemeral stream. Our findings support that juvenile Chinook salmon are morphologically flexible and can express habitat-specific developmental differences
    corecore