13 research outputs found

    Autophagy Protects Monocytes from Wolbachia Heat Shock Protein 60–Induced Apoptosis and Senescence

    Get PDF
    Monocyte dysfunction by filarial antigens has been a major mechanism underlying immune evasion following hyporesponsiveness during patent lymphatic filariasis. Recent studies have initiated a paradigm shift to comprehend the immunological interactions of Wolbachia and its antigens in inflammation, apoptosis, lymphocyte anergy, etc. Here we showed that recombinant Wolbachia heat shock protein 60 (rWmhsp60) interacts with TLR-4 and induces apoptosis in monocytes of endemic normal but not in chronic patients. Higher levels of reactive oxygen species (ROS) induced after TLR-4 stimulation resulted in loss of mitochondrial membrane potential and caspase cascade activation, which are the plausible reason for apoptosis. Furthermore, release in ROS owing to TLR-4 signaling resulted in the activation of NF-κB p65 nuclear translocation which leads to inflammation and apoptosis via TNF receptor pathway following the increase in IL-6 and TNF-α level. Here for the first time, we report that in addition to apoptosis, rWmhsp60 antigen in filarial pathogenesis also induces molecular senescence in monocytes. Targeting TLR-4, therefore, presents a promising candidate for treating rWmhsp60-induced apoptosis and senescence. Strikingly, induction of autophagy by rapamycin detains TLR-4 in late endosomes and subverts TLR-4-rWmhsp60 interaction, thus protecting TLR-4-mediated apoptosis and senescence. Furthermore, rapamycin-induced monocytes were unresponsive to rWmhsp60, and activated lymphocytes following PHA stimulation. This study demonstrates that autophagy mediates the degradation of TLR-4 signaling and protects monocytes from rWmhsp60 induced apoptosis and senescence

    The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    Get PDF
    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth

    Preface

    No full text
    corecore