36 research outputs found
Triadin/Junctin Double Null Mouse Reveals a Differential Role for Triadin and Junctin in Anchoring CASQ to the jSR and Regulating Ca2+ Homeostasis
Triadin (Tdn) and Junctin (Jct) are structurally related transmembrane proteins thought to be key mediators of structural and functional interactions between calsequestrin (CASQ) and ryanodine receptor (RyRs) at the junctional sarcoplasmic reticulum (jSR). However, the specific contribution of each protein to the jSR architecture and to excitation-contraction (e-c) coupling has not been fully established. Here, using mouse models lacking either Tdn (Tdn-null), Jct (Jct-null) or both (Tdn/Jct-null), we identify Tdn as the main component of periodically located anchors connecting CASQ to the RyR-bearing jSR membrane. Both proteins proved to be important for the structural organization of jSR cisternae and retention of CASQ within them, but with different degrees of impact. Our results also suggest that the presence of CASQ is responsible for the wide lumen of the jSR cisternae. Using Ca2+ imaging and Ca2+ selective microelectrodes we found that changes in e-c coupling, SR Ca2+content and resting [Ca2+] in Jct, Tdn and Tdn/Jct-null muscles are directly correlated to the effect of each deletion on CASQ content and its organization within the jSR. These data suggest that in skeletal muscle the disruption of Tdn/CASQ link has a more profound effect on jSR architecture and myoplasmic Ca2+ regulation than Jct/CASQ association
Target Identification for Stereotactic Thalamotomy Using Diffusion Tractography
BACKGROUND: Stereotactic targets for thalamotomy are usually derived from population-based coordinates. Individual anatomy is used only to scale the coordinates based on the location of some internal guide points. While on conventional MR imaging the thalamic nuclei are indistinguishable, recently it has become possible to identify individual thalamic nuclei using different connectivity profiles, as defined by MR diffusion tractography. METHODOLOGY AND PRINCIPAL FINDINGS: Here we investigated the inter-individual variation of the location of target nuclei for thalamotomy: the putative ventralis oralis posterior (Vop) and the ventral intermedius (Vim) nucleus as defined by probabilistic tractography. We showed that the mean inter-individual distance of the peak Vop location is 7.33 mm and 7.42 mm for Vim. The mean overlap between individual Vop nuclei was 40.2% and it was 31.8% for Vim nuclei. As a proof of concept, we also present a patient who underwent Vop thalamotomy for untreatable tremor caused by traumatic brain injury and another patient who underwent Vim thalamotomy for essential tremor. The probabilistic tractography indicated that the successful tremor control was achieved with lesions in the Vop and Vim respectively. CONCLUSIONS: Our data call attention to the need for a better appreciation of the individual anatomy when planning stereotactic functional neurosurgery
Local Control of Excitation-Contraction Coupling in Human Embryonic Stem Cell-Derived Cardiomyocytes
We investigated the mechanisms of excitation-contraction (EC) coupling in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and fetal ventricular myocytes (hFVMs) using patch-clamp electrophysiology and confocal microscopy. We tested the hypothesis that Ca2+ influx via voltage-gated L-type Ca2+ channels activates Ca2+ release from the sarcoplasmic reticulum (SR) via a local control mechanism in hESC-CMs and hFVMs. Field-stimulated, whole-cell [Ca2+]i transients in hESC-CMs required Ca2+ entry through L-type Ca2+ channels, as evidenced by the elimination of such transients by either removal of extracellular Ca2+ or treatment with diltiazem, an L-type channel inhibitor. Ca2+ release from the SR also contributes to the [Ca2+]i transient in these cells, as evidenced by studies with drugs interfering with either SR Ca2+ release (i.e. ryanodine and caffeine) or reuptake (i.e. thapsigargin and cyclopiazonic acid). As in adult ventricular myocytes, membrane depolarization evoked large L-type Ca2+ currents (ICa) and corresponding whole-cell [Ca2+]i transients in hESC-CMs and hFVMs, and the amplitude of both ICa and the [Ca2+]i transients were finely graded by the magnitude of the depolarization. hESC-CMs exhibit a decreasing EC coupling gain with depolarization to more positive test potentials, “tail” [Ca2+]i transients upon repolarization from extremely positive test potentials, and co-localized ryanodine and sarcolemmal L-type Ca2+ channels, all findings that are consistent with the local control hypothesis. Finally, we recorded Ca2+ sparks in hESC-CMs and hFVMs. Collectively, these data support a model in which tight, local control of SR Ca2+ release by the ICa during EC coupling develops early in human cardiomyocytes
Limits on Anomalous Couplings from Events at TeV
We have measured the gauge boson coupling parameters using
() events at TeV. The
data, corresponding to an integrated luminosity of 89.1 pb^{-1}, were collected
using the D0 detector at the Fermilab Tevatron Collider. The measured cross
section times branching ratio for with >
10 GeV/c and is pb, in
agreement with the Standard Model prediction. The one degree of freedom 95%
confidence level limits on individual CP-conserving parameters are
and . Similar limits are set on
the CP}violating coupling parameters.Comment: 10 pages, including two figures. Paper submitted to Phys. Rev. Let
The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study
AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease