38 research outputs found

    Isometric force production parameters during normal and experimental low back pain conditions

    Get PDF
    BACKGROUND: The control of force and its between-trial variability are often taken as critical determinants of motor performance. Subjects performed isometric trunk flexion and extension forces without and with experiment pain to examine if pain yields changes in the control of trunk forces. The objective of this study is to determine if experimental low back pain modifies trunk isometric force production. METHODS: Ten control subjects participated in this study. They were required to exert 50 and 75% of their isometric maximal trunk flexion and extension torque. In a learning phase preceding the non painful and painful trials, visual and verbal feedbacks were provided. Then, subjects were asked to perform 10 trials without any feedback. Time to peak torque, time to peak torque variability, peak torque variability as well as constant and absolute error in peak torque were calculated. Time to peak and peak dF/dt were computed to determine if the first peak of dF/dt could predict the peak torque achieved. RESULTS: Absolute and constant errors were higher in the presence of a painful electrical stimulation. Furthermore, peak torque variability for the higher level of force was increased with in the presence of experimental pain. The linear regressions between peak dF/dt, time to peak dF/dt and peak torque were similar for both conditions. Experimental low back pain yielded increased absolute and constant errors as well as a greater peak torque variability for the higher levels of force. The control strategy, however, remained the same between the non painful and painful condition. Cutaneous pain affects some isometric force production parameters but modifications of motor control strategies are not implemented spontaneously. CONCLUSIONS: It is hypothesized that adaptation of motor strategies to low back pain is implemented gradually over time. This would enable LBP patients to perform their daily tasks with presumably less pain and more accuracy

    Effects of whole-body vibration on postural control in elderly: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This systematic review was performed to summarize the current evidence for whole body vibration (WBV) interventions on postural control in elderly.</p> <p>Methods</p> <p>English and German language papers in Medline, PEDro, Cinahl and the Cochrane databases were searched. Two reviewers extracted data on patients' characteristics, type of WBV intervention and outcomes. Two independent reviewers rated the methodological quality of these studies. Data were pooled using random-effects meta-analysis.</p> <p>Results</p> <p>Fifteen papers reporting quantitative data were included. Results from 15 papers could be pooled for a meta-analysis. The studies involved 933 participants. In 7 studies the authors investigated the effects of vibration plates generating vertical sinusoidal vibrations (VS-WBV) and 7 papers described the use of side-alternating sinusoidal vibrations (SS-WBV). One study investigated both VS-WBV and SS-WBV.</p> <p>Weak to moderate evidence of an overall effect as a result of VS-WBV and SS-WBV was observed for (a) static balance for post-intervention values with a standardized mean difference (SMD) -0.06, 95% CI -0.31 to 0.18 and for change values SMD -0.26, 95% CI -1.09 to 0.57, and (b) dynamic balance for post-intervention-values SMD -0.34, 95% CI -0.60 to -0.08. For functional balance (c) an overall outcome for post-intervention values with SMD of 0.34, 95% CI -0.19 to 0.87 was found.</p> <p>Conclusions</p> <p>The 15 studies reviewed were of moderate methodological quality. In summary, SS-WBV seems to have a beneficial effect on dynamic balance in elderly individuals. However, the current results should be interpreted with caution because of the observed heterogeneity of training parameters and statistical methods. Future studies are warranted to evaluate the effects of WBV on postural control in an elderly population.</p

    Randomized clinical trial of surgery versus conservative therapy for carpal tunnel syndrome [ISRCTN84286481]

    Get PDF
    BACKGROUND: Conservative treatment remains the standard of care for treating mild to moderate carpal tunnel syndrome despite a small number of well-controlled studies and limited objective evidence to support current treatment options. There is an increasing interest in the usefulness of wrist magnetic resonance imaging could play in predicting who will benefit for various treatments. METHOD AND DESIGN: Two hundred patients with mild to moderate symptoms will be recruited over 3 1/2 years from neurological surgery, primary care, electrodiagnostic clinics. We will exclude patients with clinical or electrodiagnostic evidence of denervation or thenar muscle atrophy. We will randomly assign patients to either a well-defined conservative care protocol or surgery. The conservative care treatment will include visits with a hand therapist, exercises, a self-care booklet, work modification/ activity restriction, B6 therapy, ultrasound and possible steroid injections. The surgical care would be left up to the surgeon (endoscopic vs. open) with usual and customary follow-up. All patients will receive a wrist MRI at baseline. Patients will be contacted at 3, 6, 9 and 12 months after randomization to complete the Carpal Tunnel Syndrome Assessment Questionnaire (CTSAQ). In addition, we will compare disability (activity and work days lost) and general well being as measured by the SF-36 version II. We will control for demographics and use psychological measures (SCL-90 somatization and depression scales) as well as EDS and MRI predictors of outcomes. DISCUSSION: We have designed a randomized controlled trial which will assess the effectiveness of surgery for patients with mild to moderate carpal tunnel syndrome. An important secondary goal is to study the ability of MRI to predict patient outcomes

    Deciphering the pathogenesis of tendinopathy: a three-stages process

    Get PDF
    Our understanding of the pathogenesis of "tendinopathy" is based on fragmented evidences like pieces of a jigsaw puzzle. We propose a "failed healing theory" to knit these fragments together, which can explain previous observations. We also propose that albeit "overuse injury" and other insidious "micro trauma" may well be primary triggers of the process, "tendinopathy" is not an "overuse injury" per se. The typical clinical, histological and biochemical presentation relates to a localized chronic pain condition which may lead to tendon rupture, the latter attributed to mechanical weakness. Characterization of pathological "tendinotic" tissues revealed coexistence of collagenolytic injuries and an active healing process, focal hypervascularity and tissue metaplasia. These observations suggest a failed healing process as response to a triggering injury. The pathogenesis of tendinopathy can be described as a three stage process: injury, failed healing and clinical presentation. It is likely that some of these "initial injuries" heal well and we speculate that predisposing intrinsic or extrinsic factors may be involved. The injury stage involves a progressive collagenolytic tendon injury. The failed healing stage mainly refers to prolonged activation and failed resolution of the normal healing process. Finally, the matrix disturbances, increased focal vascularity and abnormal cytokine profiles contribute to the clinical presentations of chronic tendon pain or rupture. With this integrative pathogenesis theory, we can relate the known manifestations of tendinopathy and point to the "missing links". This model may guide future research on tendinopathy, until we could ultimately decipher the complete pathogenesis process and provide better treatments

    Bilateral motor unit synchronization is functionally organized.

    Get PDF
    To elucidate the neural interactions underlying bimanual coordination, we investigated in 11 participants the bilateral coupling of homologous muscles in an isometric force production task involving fatiguing elbow flexion and extension. We focused on changes in motor unit (MU) synchronization as evident in EMG recordings of relevant muscles. In contrast to a related study on leg muscles, the arm muscles did not exhibit MU synchronization around 16 Hz, consistent with our hypothesis that 16 Hz MU synchronization is linked to balance maintenance. As expected, bilateral MU synchronization was apparent between 8 and 12 Hz and increased with fatigue and more strongly so for extensor than for flexor muscles. MU synchronization in that frequency band is interpreted in terms of common bilateral input and substantiates the idea that common input is functionally organized. Since these findings are consistent with the literature on mirror movements, they suggest that both phenomena may be related. © 2006 Springer-Verlag
    corecore