242 research outputs found

    On the Successful Encapsulation of Water Droplets into Oil Droplets

    Get PDF
    Compound water-in-oil microdroplets can serve as microreactors in chemical and biological analyses. The inkjet printing is a useful technique to generate compound microdroplets by droplet impact. To understand the underlying physics during the droplet impact, a combined experimental and numerical study is carried out. The effect of spreading condition, impact velocity, and oil viscosity are investigated. The balance of the tripe-line among the three interfaces dominates primarily the stable morphology of the compound droplet. Reducing oil viscosity can reduce the required impact velocity. High impact velocity is necessary to reduce the side-slipping of the water droplet

    Genome-wide analysis of the nucleotide binding site leucine-rich repeat genes of four orchids revealed extremely low numbers of disease resistance genes

    Get PDF
    Orchids are one of the most diverse flowering plant families, yet possibly maintain the smallest number of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) type plant resistance (R) genes among the angiosperms. In this study, a genome-wide search in four orchid taxa identified 186 NBS-LRR genes. Furthermore, 214 NBS-LRR genes were identified from seven orchid transcriptomes. A phylogenetic analysis recovered 30 ancestral lineages (29 CNL and one RNL), far fewer than other angiosperm families. From the genetics aspect, the relatively low number of ancestral R genes is unlikely to explain the low number of R genes in orchids alone, as historical gene loss and scarce gene duplication has continuously occurred, which also contributes to the low number of R genes. Due to recent sharp expansions, Phalaenopsis equestris and Dendrobium catenatum having 52 and 115 genes, respectively, and exhibited an "early shrinking to recent expanding" evolutionary pattern, while Gastrodia elata and Apostasia shenzhenica both exhibit a "consistently shrinking" evolutionary pattern and have retained only five and 14 NBS-LRR genes, respectively. RNL genes remain in extremely low numbers with only one or two copies per genome. Notably, all of the orchid RNL genes belong to the ADR1 lineage. A separate lineage, NRG1, was entirely absent and was likely lost in the common ancestor of all monocots. All of the TNL genes were absent as well, coincident with the RNL NRG1 lineage, which supports the previously proposed notion that a potential functional association between the TNL and RNL NRG1 genes

    Multi-susceptibility genes associated with the risk of the development stages of esophageal squamous cell cancer in Feicheng County

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate the association of multi-genotype polymorphisms with the stepwise progression of esophageal squamous cell cancer (ESCC) and the possibility of predicting those at higher risk.</p> <p>Methods</p> <p>A total of 1,004 subjects were recruited from Feicheng County, China, between Jan. 2004 and Dec. 2007 and examined by endoscopy for esophageal lesions. These subjects included 270 patients with basal cell hyperplasia (BCH), 262 patients with esophageal squamous cell dysplasia (ESCD), 226 patients with ESCC, and 246 controls with Lugol-voiding area but diagnosed as having normal esophageal squamous epithelial cells by histopathology. The genotypes for <it>CYP2E1 </it>G1259C, <it>hOGG1 </it>C326G, <it>MTHFR </it>C677T, <it>MPO </it>G463A, and <it>ALDH2 </it>allele genes were identified in blood samples collected from all participants.</p> <p>Results</p> <p>The alleles <it>ALDH2 </it>and <it>MTHFR </it>C677T were critical for determining individual susceptibility to esophageal cancer. Compared to the <it>ALDH </it>1*1 genotype, the <it>ALDH </it>2*2 genotype was significantly associated with increased risks of BCH, ESCD, and ESCC. However, the TT genotype of <it>MTHFR </it>C677T only increased the risk of ESCC. Further analysis revealed that the combination of the high-risk genotypes 2*2/1*2 of <it>ALDH </it>2 and TT/TC of <it>MTHFR </it>C677T increased the risk of BCH by 4.0 fold, of ESCD by 3.7 fold, and ESSC by 8.72 fold. The generalized odds ratio (OR<sub>G</sub>) of the two combined genotypes was 1.83 (95%CI: 1.55-2.16), indicating a strong genetic association with the risk of carcinogenic progression in the esophagus.</p> <p>Conclusions</p> <p>The study demonstrated that the genotypes <it>ALDH2*2 </it>and <it>MTHFR </it>677TT conferred elevated risk for developing esophageal carcinoma and that the two susceptibility genotypes combined to synergistically increase the risk.</p

    Pathway-Based Association Analyses Identified TRAIL Pathway for Osteoporotic Fractures

    Get PDF
    ) pathway were associated with bone metabolism. This study aims to verify the potential association between hip OF and TRAIL pathway.Using genome-wide genotype data from Affymetrix 500 K SNP arrays, we performed novel pathway-based association analyses for hip OF in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls).) of the pathway had minor alleles (A) that are associated with an increased risk of hip OF, with the ORs (odds ratios) of 16.51 (95%CI:3.83–71.24) and 1.37 (95%CI:1.08–1.74), respectively.Our study supports the potential role of the TRAIL pathway in the pathogenesis of hip OF in Chinese Han population. Further functional study of this pathway will be pursued to determine the mechanism by which it confers risk to hip OF

    Sheathless Focusing and Separation of Diverse Nanoparticles in Viscoelastic Solutions with Minimized Shear Thinning

    Get PDF
    Viscoelastic microfluidics becomes an efficient and label free hydrodynamic technology to enrich and separate micrometer-scale particles, including blood cells, circulating tumor cells, and bacteria. However, the manipulation of nanoscale particles by viscoelastic microfluidics remains a major challenge, because the viscoelastic force acting on the smaller particle decreases dramatically. In contrast to the commonly used polymer solutions of high molecular weight, herein we utilize the aqueous solutions of poly(ethylene oxide) (PEO) of low molecular weight with minimized shear thinning but sufficient elastic force for high-quality focusing and separation of various nanoparticles. The focusing efficiencies of 100 nm polystyrene (PS) nanoparticles and 2-DNA molecules are 84% and 85%, respectively, in a double spiral microchannel, without the aid of sheath flows. Furthermore, we demonstrate the size-based viscoelastic separation of two sets of binary mixtures-100/2000 nm PS particles and 2-DNA molecules/blood platelets all achieving separation efficiencies of >95% in the same device. Our proposal technique would be a promising approach for enrichment/separation of the nanoparticles encountered in applications of analytical chemistry and nanotechnology

    Litter Size Variation in Hypothalamic Gene Expression Determines Adult Metabolic Phenotype in Brandt's Voles (Lasiopodomys brandtii)

    Get PDF
    Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10-12) and small (3-4) litter sizes, of Brandt's voles (Lasiopodomys brandtii), a rodent species from Inner Mongolia grassland in China.Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb) mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3) mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP) mRNA increased in the offspring from small litters.These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood

    Why Does the Giant Panda Eat Bamboo? A Comparative Analysis of Appetite-Reward-Related Genes among Mammals

    Get PDF
    Background: The giant panda has an interesting bamboo diet unlike the other species in the order of Carnivora. The umami taste receptor gene T1R1 has been identified as a pseudogene during its genome sequencing project and confirmed using a different giant panda sample. The estimated mutation time for this gene is about 4.2 Myr. Such mutation coincided with the giant panda’s dietary change and also reinforced its herbivorous life style. However, as this gene is preserved in herbivores such as cow and horse, we need to look for other reasons behind the giant panda’s diet switch. Methodology/Principal Findings: Since taste is part of the reward properties of food related to its energy and nutrition contents, we did a systematic analysis on those genes involved in the appetite-reward system for the giant panda. We extracted the giant panda sequence information for those genes and compared with the human sequence first and then with seven other species including chimpanzee, mouse, rat, dog, cat, horse, and cow. Orthologs in panda were further analyzed based on the coding region, Kozak consensus sequence, and potential microRNA binding of those genes. Conclusions/Significance: Our results revealed an interesting dopamine metabolic involvement in the panda’s food choice

    Protective Gene Expression Changes Elicited by an Inherited Defect in Photoreceptor Structure

    Get PDF
    Inherited defects in retinal photoreceptor structure impair visual transduction, disrupt relationship with the retinal pigment epithelium (RPE), and compromise cell viability. A variety of progressive retinal degenerative diseases can result, and knowledge of disease etiology remains incomplete. To investigate pathogenic mechanisms in such instances, we have characterized rod photoreceptor and retinal gene expression changes in response to a defined insult to photoreceptor structure, using the retinal degeneration slow (rds) mouse model. Global gene expression profiling was performed on flow-sorted rds and wild-type rod photoreceptors immediately prior and subsequent to times at which OSs are normally elaborated. Dysregulated genes were identified via microarray hybridization, and selected candidates were validated using quantitative PCR analyses. Both the array and qPCR data revealed that gene expression changes were generally modest and dispersed amongst a variety of known functional networks. Although genes showing major (>5-fold) differential expression were identified in a few instances, nearly all displayed transient temporal profiles, returning to WT levels by postnatal day (P) 21. These observations suggest that major defects in photoreceptor cell structure may induce early homeostatic responses, which function in a protective manner to promote cell viability. We identified a single key gene, Egr1, that was dysregulated in a sustained fashion in rds rod photoreceptors and retina. Egr1 upregulation was associated with microglial activation and migration into the outer retina at times subsequent to the major peak of photoreceptor cell death. Interestingly, this response was accompanied by neurotrophic factor upregulation. We hypothesize that activation of Egr1 and neurotrophic factors may represent a protective immune mechanism which contributes to the characteristically slow retinal degeneration of the rds mouse model
    corecore