7 research outputs found

    Evaluation of six CTLA-4 polymorphisms in high-risk melanoma patients receiving adjuvant interferon therapy in the He13A/98 multicenter trial

    Get PDF
    <p>ABSTRACT</p> <p>Purpose</p> <p>Interferon is approved for adjuvant treatment of patients with stage IIb/III melanoma. The toxicity and uncertainty regarding survival benefits of interferon have qualified its acceptance, despite significant durable relapse prevention in a fraction of patients. Predictive biomarkers that would enable selection of patients for therapy would have a large impact upon clinical practice. Specific CTLA-4 polymorphisms have previously shown an association with response to CTLA-4 blockade in patients with metastatic melanoma and the development of autoimmunity.</p> <p>Experimental design</p> <p>286 melanoma patients and 288 healthy controls were genotyped for six CTLA-4 polymorphisms previously suggested to be important (AG 49, CT 318, CT 60, JO 27, JO30 and JO 31). Specific allele frequencies were compared between the healthy and patient populations, as well as presence or absence of these in relation to recurrence. Alleles related to autoimmune disease were also investigated.</p> <p>Results</p> <p>No significant differences were found between the distributions of CTLA-4 polymorphisms in the melanoma population compared with healthy controls. Relapse free survival (RFS) and overall survival (OS) did not differ significantly between patients with the alleles represented by these polymorphisms. No correlation between autoimmunity and specific alleles was shown. The six polymorphisms evaluated where strongly associated (Fisher's exact p-values < 0.001 for all associations) and significant linkage disequilibrium among these was indicated.</p> <p>Conclusion</p> <p>No polymorphisms of CTLA-4 defined by the SNPs studied were correlated with improved RFS, OS, or autoimmunity in this high-risk group of melanoma patients.</p

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    The G protein-coupled estrogen receptor (GPER) is expressed in two different subcellular localizations reflecting distinct tumor properties in breast cancer

    Get PDF
    INTRODUCTION: The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. METHODS: The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. RESULTS: A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). CONCLUSION: Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment

    Engineering GPCR signaling pathways with RASSLs

    No full text
    We are creating families of designer G-protein-coupled receptors (GPCRs) to allow for precise spatiotemporal control of GPCR signaling in vivo. These engineered GPCRs, called receptors activated solely by synthetic ligands (RASSLs), are unresponsive to endogenous ligands but can be activated by nanomolar concentrations of pharmacologically inert, drug-like small molecules. Currently, RASSLs exist for the three major GPCR signaling pathways (G(s), G(i), G(q)). These new advances are reviewed here to help facilitate the use of these powerful and diverse tools
    corecore