5 research outputs found

    Fertility assessment in hybrids between monobrachially homologous Rb races of the house mouse from the island of Madeira: implications for modes of chromosomal evolution

    No full text
    The speciation model of divergence by monobrachially homologous fusions (that is, with one arm in common) benefits from a wide conceptual acceptance, because heterozygotes between populations carrying such fusions suffer from high levels of meiotic dysfunction. The same meiotic configurations can also be generated by WART (whole-arm reciprocal translocation), rearrangements that are known to occur in mammals. Estimating the disadvantage of heterozygotes carrying monobrachially homologous fusions is required to evaluate the relevance of this mode of chromosomal evolution in diversification and speciation. House mice are an excellent study models because chromosomal races exist carrying monobrachially homologous fusions, and WARTs have been documented in this species. The fertility of heterozygote mice carrying the smallest number of monobrachially homologous fusions (that is, a chain of four chromosomes, C4) was investigated in laboratory-bred hybrids between two parapatric chromosomal races from the island of Madeira. Meiotic nondisjunction analyses and histological sections of testes showed that aneuploidy (16.7%) and germ cell death (50.9%) rates reached significantly higher mean values in hybrids than in homozygotes. In females, however, the histological analysis of ovarian follicle parameters revealed no significant differences between hybrid and homozygous individuals. Overall, the reproductive assays indicated that these C4-carrying hybrids were not sterile but showed an approximately 50% decrease in fertility compared to homozygous parental mice. Implications for modes of chromosomal evolution involving monobrachially homologous fusions are discussed

    The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation

    No full text

    Effect of early experience on neuronal and behavioral responses to con- and heterospecific odors in closely related Mus taxa: epigenetic contribution in formation of precopulatory isolation

    No full text
    corecore