49 research outputs found
Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts
Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology
Survivability Is More Fundamental Than Evolvability
For a lineage to survive over long time periods, it must sometimes change. This has given rise to the term evolvability, meaning the tendency to produce adaptive variation. One lineage may be superior to another in terms of its current standing variation, or it may tend to produce more adaptive variation. However, evolutionary outcomes depend on more than standing variation and produced adaptive variation: deleterious variation also matters. Evolvability, as most commonly interpreted, is not predictive of evolutionary outcomes. Here, we define a predictive measure of the evolutionary success of a lineage that we call the k-survivability, defined as the probability that the lineage avoids extinction for k generations. We estimate the k-survivability using multiple experimental replicates. Because we measure evolutionary outcomes, the initial standing variation, the full spectrum of generated variation, and the heritability of that variation are all incorporated. Survivability also accounts for the decreased joint likelihood of extinction of sub-lineages when they 1) disperse in space, or 2) diversify in lifestyle. We illustrate measurement of survivability with in silico models, and suggest that it may also be measured in vivo using multiple longitudinal replicates. The k-survivability is a metric that enables the quantitative study of, for example, the evolution of 1) mutation rates, 2) dispersal mechanisms, 3) the genotype-phenotype map, and 4) sexual reproduction, in temporally and spatially fluctuating environments. Although these disparate phenomena evolve by well-understood microevolutionary rules, they are also subject to the macroevolutionary constraint of long-term survivability
Cataloging Coding Sequence Variations in Human Genome Databases
BACKGROUND: With the recent growth of information on sequence variations in the human genome, predictions regarding the functional effects and relevance to disease phenotypes of coding sequence variations are becoming increasingly important. The aims of this study were to catalog protein-coding sequence variations (CVs) occurring in genetic variation databases and to use bioinformatic programs to analyze CVs. In addition, we aim to provide insight into the functionality of the reference databases. METHODOLOGY AND FINDINGS: To catalog CVs on a genome-wide scale with regard to protein function and disease, we investigated three representative databases; the Human Gene Mutation Database (HGMD), the Single Nucleotide Polymorphisms database (dbSNP), and the Haplotype Map (HapMap). Using these three databases, we analyzed CVs at the protein function level with bioinformatic programs. We proposed a combinatorial approach using the Support Vector Machine (SVM) to increase the performance of the prediction programs. By cataloging the coding sequence variations using these databases, we found that 4.36% of CVs from HGMD are concurrently registered in dbSNP (8.11% of CVs from dbSNP are concurrent in HGMD). The pattern of substitutions and functional consequences predicted by three bioinformatic programs was significantly different among concurrent CVs, and CVs occurring solely in HGMD or in dbSNP. The experimental results showed that the proposed SVM combination noticeably outperformed the individual prediction programs. CONCLUSIONS: This is the first study to compare human sequence variations in HGMD, dbSNP and HapMap at the genome-wide level. We found that a significant proportion of CVs in HGMD and dbSNP overlap, and we emphasize the need to use caution when interpreting the phenotypic relevance of these concurrent CVs. Combining bioinformatic programs can be helpful in predicting the functional consequences of CVs because it improved the performance of functional predictions
Evolution of two actin genes in the sea urchin Strongylocentrotus franciscanus
The complete nucleotide sequences of two chromosomally linked actin genes from the sea urchin Strongylocentrotus franciscanus are presented. The genes are separated by 5.7 kilobases, occur in the same transcriptional orientation, and contain introns in identical positions. The structures and nucleotide sequences of the two genes are extremely similar, suggesting that they arose through a recent duplication. Comparison of the nucleotide sequences of the genes allows inferences to be made about mutational mechanisms active since the duplication event. Whereas point mutations predominate in the coding regions, the introns and flanking DNA are more heavily influenced by a variety of events that cause simultaneous changes in short regions of DNA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48040/1/239_2005_Article_BF02101689.pd
Determinants of cognitive function in childhood: A cohort study in a middle income context
BACKGROUND: There is evidence that poverty, health and nutrition affect children's cognitive development. This study aimed to examine the relative contributions of both proximal and distal risk factors on child cognitive development, by breaking down the possible causal pathways through which poverty affects cognition. METHODS: This cohort study collected data on family socioeconomic status, household and neighbourhood environmental conditions, child health and nutritional status, psychosocial stimulation and nursery school attendance. The effect of these on Wechsler Pre-School and Primary Scale of Intelligence scores at five years of age was investigated using a multivariable hierarchical analysis, guided by the proposed conceptual framework. RESULTS: Unfavourable socioeconomic conditions, poorly educated mother, absent father, poor sanitary conditions at home and in the neighbourhood and low birth weight were negatively associated with cognitive performance at five years of age, while strong positive associations were found with high levels of domestic stimulation and nursery school attendance. CONCLUSION: Children's cognitive development in urban contexts in developing countries could be substantially increased by interventions promoting early psychosocial stimulation and preschool experience, together with efforts to prevent low birth weight and promote adequate nutritional status
In a Trinitarian Embrace: Reflections from a Local Eucharistic Community in a Global World
The context of the chapter is an Anglican “liberal Catholic” congregation in the Church of England, within a multicultural northern UK city, where those who gather represent the diversity of the globalized, postcolonial world. The chapter highlights the relationship between Anglo-Catholic Eucharistic liturgy, with its Trinitarian form, and feminist commitment to justice-making. The exclusion of feminist reimagining from current rethinking of Trinitarian theology is challenged by affirming the place of a sparse Trinitarian rule, in order to expose heteropatriarchal contraventions of the rule and then to re-site feminist reimagining in relation to it. This enables female imagery for God to infuse, rather than displace, classical liturgical language of God as Father-Son-Spirit, and undermines deeply entrenched heteropatriarchal contraventions. The metaphor of a Trinitarian embrace reflects this opening of the received Trinitarian liturgical form. The impetus for the feminist struggle for justice is found in being swept up into Christ through the Trinitarian missio Dei, in anticipation of the abundant table spread by Divine Wisdom for all people