46 research outputs found

    Spatio-temporal population modelling for enhanced assessment of urban exposure to flood risk

    Get PDF
    There is a growing need for high resolution spatio-temporal population estimates which allow accurate assessment of population exposure to natural hazards. Current approaches to population estimation are usually limited either by the use of arbitrary administrative boundaries or insufficient resolution in the temporal dimension. The innovative approach proposed here combines the use of a spatio-temporal gridded population model with flood inundation data to estimate time-specific variations in population exposed to natural hazards. The approach is exemplified through an application centred on Southampton (UK) using Environment Agency flood map inundation data. Results demonstrate that large fluctuations occur over time in the population distribution within flood risk zones. Variations in the spatio-temporal distribution of population subgroups are explored. Analysis using GIS indicates a diurnal shift in exposure between fluvial and tidal flooding, particularly attributable to the movement of the working age population. This illustrates the improvements achievable to flood risk management as well as potential application to other natural hazard scenarios both within the UK and globally

    New Unstructured Mesh Water Quality Model for Cooling Water Biocide Discharges

    No full text
    A new unstructured mesh coastal water and air quality model has been developed that includes species transport, nonlinear decay, by-product formation, and mass-exchange between sea and atmosphere. The model has been programmed with a graphical user interface and is applicable to coastal seawater, lakes, and rivers. Focused on species conversion and interaction with the atmosphere, the water and air quality model follows a modular approach. It is a compatible module which simulates distributions based on fluid dynamic field data of underlying existing hydrodynamic and atmospheric simulations. Nonlinear and spline approximations of decay and growth kinetics, by-product formation, and joint sea-atmosphere simulation have been embedded. The Windows application software includes functions allowing error analysis concerning mesh and finite volume approximation. In this work, a submerged residual chlorine cooling water discharge and halogenated matter by-product formation has been simulated. An error analysis has been carried out by varying vertical meshing, time-steps and comparing results based on explicit and implicit finite volume approximation. The new model has been named 3D Simulation for Marine and Atmospheric Reactive Transport, in short 3D SMART. © 2013 Springer Science+Business Media Dordrecht
    corecore