25,697 research outputs found

    Polymerase-endonuclease amplification reaction for large-scale enzymatic production of antisense oligonucleotide

    Get PDF
    Synthetic oligonucleotides are contaminated with highly homologous failure sequences. Oligonucleotide synthesis is difficult to scale up because it requires expensive equipments, hazardous chemicals, and tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR), for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI) cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves >100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation, so it has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs

    GLAST Prospects for Swift-Era Afterglows

    Full text link
    We calculate the GeV spectra of GRB afterglows produced by inverse Compton scattering of the sub-MeV emission of these objects. We improve on earlier treatments by using refined afterglow parameters and new model developments motivated by recent Swift observations. We present time-dependent GeV spectra for standard, constant parameter models, as well as for models with energy injection and with time-varying parameters, for a range of burst parameters. We evaluate the limiting redshift to which such afterglows can be detected by the GLAST LAT, as well as AGILE.Comment: 19 pages, 5 figures, ApJ, in pres

    Optimal Use of Current and Outdated Channel State Information - Degrees of Freedom of the MISO BC with Mixed CSIT

    Full text link
    We consider a multiple-input-single-output (MISO) broadcast channel with mixed channel state information at the transmitter (CSIT) that consists of imperfect current CSIT and perfect outdated CSIT. Recent work by Kobayashi et al. presented a scheme which exploits both imperfect current CSIT and perfect outdated CSIT and achieves higher degrees of freedom (DoF) than possible with only imperfect current CSIT or only outdated CSIT individually. In this work, we further improve the achievable DoF in this setting by incorporating additional private messages, and provide a tight information theoretic DoF outer bound, thereby identifying the DoF optimal use of mixed CSIT. The new result is stronger even in the original setting of only delayed CSIT, because it allows us to remove the restricting assumption of statistically equivalent fading for all users
    corecore