883 research outputs found
Penetration And Scattering Of Lower Hybrid Waves By Density Fluctuations
Lower Hybrid [LH] ray propagation in toroidal plasma is controlled by a combination of the azimuthal spectrum launched from the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the density fluctuations. The width of the poloidal and radial RF wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the turbulence. The electron temperature gradient [ETG] spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and parallel phase velocities. ETG turbulence is also driven by the radial gradient of the electron current density giving rise to an anomalous viscosity spreading the LH-driven plasma currents. The scattered LH spectrum is derived from a Fokker-Planck equation for the distribution of the ray trajectories with a diffusivity proportional to the fluctuations. The LH ray diffusivity is large giving transport in the poloidal and radial wavenumber spectrum in one -or a few passes - of the rays through the core plasma.Institute for Fusion Studie
3D simulations of gas puff effects on edge plasma and ICRF coupling in JET
Recent JET (ITER-Like Wall) experiments have shown that the fueling gas puffed from different locations of the vessel can result in different scrape-off layer (SOL) density profiles and therefore different radio frequency (RF) coupling. To reproduce the experimental observations, to understand the associated physics and to optimize the gas puff methods, we have carried out three-dimensional (3D) simulations with the EMC3-EIRENE code in JET-ILW including a realistic description of the vessel geometry and the gas injection modules (GIMs) configuration. Various gas puffing methods have been investigated, in which the location of gas fueling is the only variable parameter. The simulation results are in quantitative agreement with the experimental measurements. They confirm that compared to divertor gas fueling, mid-plane gas puffing increases the SOL density most significantly but locally, while top gas puffing increases it uniformly in toroidal direction but to a lower degree. Moreover, the present analysis corroborates the experimental findings that combined gas puff scenarios-based on distributed main chamber gas puffing-can be effective in increasing the RF coupling for multiple antennas simultaneously. The results indicate that the spreading of the gas, the local ionization and the transport of the ionized gas along the magnetic field lines connecting the local gas cloud in front of the GIMs to the antennas are responsible for the enhanced SOL density and thus the larger RF coupling
Lower hybrid counter-current drive experiment in JET
12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France)Lower hybrid current drive has been demonstrated to be an efficient tool to modify the current profile in order to access to high energy confinement regimes. Counter-current drive could be an alternative scenario provided the current drive efficiency is not too small when fast electrons flow in the opposite way to the DC electric field. By reversing the toroidal field (Bt=-3.1T) and the plasma current (Ip=-1.45MA), counter current drive with lower hybrid waves has been investigated for the first time in JET. The experiments were carried out at low plasma density ( =1.0 x1019m-3 , ne(0)=1.6 x 1019m-3) with 2.9MW of lower hybrid power. The CRONOS code[1], which couples the diffusion equations to a 2-D equilibrium code, has been used to estimate the RF driven current. Runs indicate that loop voltage and internal inductance are best simulated with a current drive efficiency of –1.0 x 1019 A.W-1.m-2 with a peaked central LH power deposition deduced from DELPHINE[2]. This efficiency is indeed very close to the one found for co-LHCD at similar plasma current and density. Current profile evolves from a hollow profile (with a minimum at r/a ~0) and a maximum at r/a~0.4-0.5) to a rather flat profile (up to r/a=0.3)
Fundamental cyclotron 3He minority ICRF heating experiments in H plasmas in JET in presence of the ILW
Efficient plasma heating schemes are a prerequisite for reaching fusion relevant temperatures in fusion
machines. On the road to reaching ignition, non-activated scenarios - such as (3He
N=2 ICRH of H majority plasmas in JET-ILW
Heating single ion species plasmas with ICRF is a challenging task: Fundamental ion cyclotron heating (w = w(ci)) suffers from the adverse polarization of the RF electric fields near the majority cyclotron resonance while second harmonic heating (w =2w(ci)) typically requires pre-heating of the plasma ions to become efficient. Recently, w =2wci ICRF heating was tested in JET-ILW hydrogen plasmas in the absence of neutral beam injection (L-mode). Despite the lack of pre-heating, up to 6MW of ICRF power were coupled to the plasma leading to a transition to H-mode for P-ICRH>5MW in most discharges. Heating efficiencies between 0.65-0.85 were achieved as a combination of the low magnetic field adopted (enhanced finite Larmor radius effects) and the deliberate slow rise of the ICRF power, allowing time for a fast ion population to gradually build-up leading to a systematic increase of the wave absorptivity. Although fast ion tails are a common feature of harmonic ICRF heating, the N=2 majority heating features moderate tail energies (<500keV) except at very low plasma densities (n(e0)<3x10(19)/m(3)), where fast H tails in the MeV range developed and fast ion losses became significant, leading to enhanced plasma wall interaction. The main results of these experiments will be reported
First Measurements of Electron Temperature Fluctuations by Correlation ECE on Tore Supra
Electron temperature fluctuation studies can help to understand the nature of
the turbulent transport in to-kamak plasmas. At Tore Supra, a 32-channel
heterodyne ECE radiometer has been upgraded with two chan-nels of 100 MHz
bandwidth and tunable central frequencies allowing the shift of the plasma
sample volume in the radial direction. With the sufficiently large video
bandwidth and the long sampling time, it is possible to reduce significantly
the thermal noise and to identify "true" high frequency components up to 200
kHz from the cross-correlation between these channels. First results of
temperature fluctuation measurements on Tore Supra are reported in this paper.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
- …