3 research outputs found

    An AC active power regulation method for MMC by employing the internal energy

    No full text
    Similar to the onshore wind power integrated through AC transmission, the offshore wind power integrated through the modular multilevel converter (MMC) based HVDC also lays remarkable impacts on the stability of the power system. According to grid codes, offshore wind power should be capable of adjusting its active power fast. This paper proposes a fast regulation method at the onshore point of common coupling for offshore wind power by utilizing the energy stored in the distributed capacitors in the MMC. By carefully designing the curve of capacitor energy, the active power can vary expectedly. Meanwhile, no disturbance is placed on the DC-side active power or DC voltage. The effectiveness of the proposed method is verified by electromagnetic simulation

    In Vitro Neuroprotection of Rat Hippocampal Neurons by Manninotriose and Astragaloside IV Against Corticosterone-Induced Toxicity

    No full text
    A chronically elevated glucocorticoid level impairs memory and cognition. Manninotriose is the main oligosaccharide of Prepared Radix Rehmanniae, and Astragaloside IV (AS-IV) is the primary ingredient of Astragali Radix; they have been reported to possess neuroprotective effects. The aim of the present study was to investigate the protective effects of Manninotriose and AS-IV on corticosterone (CORT) induced neurotoxicity and the underlying mechanisms. Primary cultured hippocampal neurons from newborn Sprague Dawley rats were treated with CORT in the absence or presence of Manninotriose and AS-IV. Cell Counting Kit-8 experiments and fluorescein diacetate (FDA)/propidium iodide (PI) double staining were conducted to assess the activity and survival rate of neurons. Quantitative Real-time PCR (qRT-PCR) and western blot analysis were performed to detect the expression of glucocorticoid receptor (GR), zinc finger protein (Zif268) and synapsin 1 (SYN1). DNA methylation of the gene promoter was assessed by bisulfite sequencing (BSP) analysis. The results demonstrated that pre-treatment with Manninotriose and AS-IV significantly improved cell viability and survival rate, and ameliorated the downregulation of GR, Zif268 and SYN1 genes in CORT injured neurons. BSP analysis revealed that CORT was able to improve the CpG island methylation rate of SYN1. AS-IV was observed to decrease the hypermethylation of the SYN1 gene induced by CORT. The results of the present study indicated that Manninotriose and AS-IV may have a protective effect against CORT-induced damage and the downregulation of learning and memory associated genes in hippocampal neurons. Regulation of DNA methylation may be important in the pharmaceutical activities of AS-IV. Thus, Manninotriose and AS-IV may be effective agents against learning and memory impairment

    Role of SIRT2 in regulating the dexamethasone-activated autophagy pathway in skeletal muscle atrophy

    No full text
    The proteolytic autophagy system is involved in a major regulatory pathway in dexamethasone (Dex)-induced muscle atrophy. Sirtuin 2 (SIRT2) is known to participate in modulating autophagy signaling, exerting effects in skeletal muscle atrophy. We aimed to determine the effects of SIRT2 on autophagy in Dex-induced myoatrophy. Mice were randomly divided into the normal, Dex, and sirtinol groups. C2C12 cells were differentiated into myotubes and transfected with short hairpin (sh)-Sirt2-green fluorescent protein (GFP) or Sirt2-GFP lentivirus. To evaluate the mass and function of skeletal muscles, we measured the myofiber cross-sectional area, myotube size, gastrocnemius muscle wet weight/body weight ratio (%), and time-to-exhaustion. The SIRT2, myosin heavy chain (MyHC), LC3, and Beclin-1 expression levels were detected by western blotting and quantitative reverse transcription-polymerase chain reaction. Inhibition of SIRT2 markedly attenuated the muscle mass and endurance capacity. The same phenotype was observed in Sirt2-shRNA-treated myotubes, as evidenced by their decreased size. Conversely, SIRT2 overexpression alleviated Dex-induced myoatrophy in vitro. Moreover, SIRT2 negatively regulated the expression of the LC3b and Beclin-1 in skeletal muscles. These findings suggested that SIRT2 activation protects myotubes against Dex-induced atrophy through the inhibition of the autophagy system; this phenomenon may potentially serve as a target for treating glucocorticoid-induced myopathy.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore