14,758 research outputs found

    The complex Sine-Gordon equation as a symmetry flow of the AKNS Hierarchy

    Full text link
    It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the ``negative'' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector Nonlinear Schrodinger equations appear as lowest negative and second positive flows within the extended hierarchy. This is fully analogous to the well-known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the ``negative'' sector of sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N) loop algebra is indicated.Comment: 8 pages, LaTeX, typos corrected, references update

    Parameterized Complexity of Equitable Coloring

    Full text link
    A graph on nn vertices is equitably kk-colorable if it is kk-colorable and every color is used either n/k\left\lfloor n/k \right\rfloor or n/k\left\lceil n/k \right\rceil times. Such a problem appears to be considerably harder than vertex coloring, being NP-Complete\mathsf{NP\text{-}Complete} even for cographs and interval graphs. In this work, we prove that it is W[1]-Hard\mathsf{W[1]\text{-}Hard} for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-Hard\mathsf{W[1]\text{-}Hard} for K1,4K_{1,4}-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that \textsc{equitable coloring} is FPT\mathsf{FPT} when parameterized by the treewidth of the complement graph

    Plastic Deformation of 2D Crumpled Wires

    Full text link
    When a single long piece of elastic wire is injected trough channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper it is investigated this packing process but using plastic wires which give origin to completely irreversible structures of different morphology. In particular, it is studied experimentally the plastic deformation from circular to oblate configurations of crumpled wires, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility, and very large deformations, scaling is still observed.Comment: 5 pages, 6 figure

    Método de obtenção qualificada de fenótipos visando à avaliação de genótipos bovinos resistentes ao carrapato Rhipicephalus (Boophilus) microplus.

    Get PDF
    Formação de grupos de manejo; Determinação correta do momento da mensuração da carga parasitária; Controle parasitário durante o período de avaliação; Padronização da técnica de contagem de carrapatos; Registro de dados; Análise dos dados.bitstream/item/31735/1/CO-75-online.pd
    corecore