22,911 research outputs found

    Mean Field Limits for Interacting Diffusions in a Two-Scale Potential

    Get PDF
    In this paper we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in~\cite{DuncanPavliotis2016}. We show that, although the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions

    Beliefs and actions in the trust game: creating instrumental variables to estimate the causal effect

    Get PDF
    In many economic contexts, an elusive variable of interest is the agent's expectation about relevant events, e.g. about other agents' behavior. Recent experimental studies as well as surveys have asked participants to state their beliefs explicitly, but little is known about the causal relation between beliefs and other behavioral variables. This paper discusses the possibility of creating exogenous instrumental variables for belief statements, by shifting the probabilities of the relevant events. We conduct trust game experiments where the amount sent back by the second player (trustee) is exogenously varied by a random process, in a way that informs only the �first player (trustor) about the realized variation. The procedure allows detecting causal links from beliefs to actions under plausible assumptions. The IV estimates indicate a signi�ficant causal effect, comparable to the connection between beliefs and actions that is suggested by OLS analyses

    Supersymmetric Extension of the Quantum Spherical Model

    Get PDF
    In this work, we present a supersymmetric extension of the quantum spherical model, both in components and also in the superspace formalisms. We find the solution for short/long range interactions through the imaginary time formalism path integral approach. The existence of critical points (classical and quantum) is analyzed and the corresponding critical dimensions are determined.Comment: 21 pages, fixed notation to match published versio

    Energy and volume of vector fields on spherical domains

    Full text link
    We present in this paper a \boundary version" for theorems about minimality of volume and energy functionals on a spherical domain of threedimensional Euclidean sphere

    The higher grading structure of the WKI hierarchy and the two-component short pulse equation

    Full text link
    A higher grading affine algebraic construction of integrable hierarchies, containing the Wadati-Konno-Ichikawa (WKI) hierarchy as a particular case, is proposed. We show that a two-component generalization of the Sch\" afer-Wayne short pulse equation arises quite naturally from the first negative flow of the WKI hierarchy. Some novel integrable nonautonomous models are also proposed. The conserved charges, both local and nonlocal, are obtained from the Riccati form of the spectral problem. The loop-soliton solutions of the WKI hierarchy are systematically constructed through gauge followed by reciprocal B\" acklund transformation, establishing the precise connection between the whole WKI and AKNS hierarchies. The connection between the short pulse equation with the sine-Gordon model is extended to a correspondence between the two-component short pulse equation and the Lund-Regge model

    The algebraic structure behind the derivative nonlinear Schroedinger equation

    Full text link
    The Kaup-Newell (KN) hierarchy contains the derivative nonlinear Schr\" odinger equation (DNLSE) amongst others interesting and important nonlinear integrable equations. In this paper, a general higher grading affine algebraic construction of integrable hierarchies is proposed and the KN hierarchy is established in terms of a sâ„“^2\hat{s\ell}_2 Kac-Moody algebra and principal gradation. In this form, our spectral problem is linear in the spectral parameter. The positive and negative flows are derived, showing that some interesting physical models arise from the same algebraic structure. For instance, the DNLSE is obtained as the second positive, while the Mikhailov model as the first negative flows, respectively. The equivalence between the latter and the massive Thirring model is explicitly demonstrated also. The algebraic dressing method is employed to construct soliton solutions in a systematic manner for all members of the hierarchy. Finally, the equivalence of the spectral problem introduced in this paper with the usual one, which is quadratic in the spectral parameter, is achieved by setting a particular automorphism of the affine algebra, which maps the homogeneous into principal gradation.Comment: references adde

    Disagreement between capture probabilities extracted from capture and quasi-elastic backscattering excitation functions

    Full text link
    Experimental quasi-elastic backscattering and capture (fusion) excitation functions are usually used to extract the s-wave capture probabilities for the heavy-ion reactions. We investigated the 16^{16}O+120^{120}Sn,144^{144}Sm,208^{208}Pb systems at energies near and below the corresponding Coulomb barriers and concluded that the probabilities extracted from quasi-elastic data are much larger than the ones extracted from fusion excitation functions at sub and deep-sub barrier energies. This seems to be a reasonable explanation for the known disagreement observed in literature for the nuclear potential diffuseness derived from both methods.Comment: 9 pages, 3 figure
    • …
    corecore