120 research outputs found
Black soliton in a quasi-one-dimensional trapped fermion-fermion mixture
Employing a time-dependent mean-field-hydrodynamic model we study the
generation of black solitons in a degenerate fermion-fermion mixture in a
cigar-shaped geometry using variational and numerical solutions. The black
soliton is found to be the first stationary vibrational excitation of the
system and is considered to be a nonlinear continuation of the vibrational
excitation of the harmonic oscillator state. We illustrate the stationary
nature of the black soliton, by studying different perturbations on it after
its formation.Comment: 7 pages, 10 figure
On the single mode approximation in spinor-1 atomic condensate
We investigate the validity conditions of the single mode approximation (SMA)
in spinor-1 atomic condensate when effects due to residual magnetic fields are
negligible. For atomic interactions of the ferromagnetic type, the SMA is shown
to be exact, with a mode function different from what is commonly used.
However, the quantitative deviation is small under current experimental
conditions (for Rb atoms). For anti-ferromagnetic interactions, we find
that the SMA becomes invalid in general. The differences among the mean field
mode functions for the three spin components are shown to depend strongly on
the system magnetization. Our results can be important for studies of beyond
mean field quantum correlations, such as fragmentation, spin squeezing, and
multi-partite entanglement.Comment: Revised, newly found analytic proof adde
The dynamics of quantum phases in a spinor condensate
We discuss the quantum phases and their diffusion dynamics in a spinor-1
atomic Bose-Einstein condensate. For ferromagnetic interactions, we obtain the
exact ground state distribution of the phases associated with the total atom
number (), the total magnetization (), and the alignment (or
hypercharge) () of the system. The mean field ground state is stable against
fluctuations of atom numbers in each of the spin components, and the phases
associated with the order parameter for each spin components diffuse while
dynamically recover the two broken continuous symmetries [U(1) and SO(2)] when
and are conserved as in current experiments. We discuss the
implications to the quantum dynamics due to an external (homogeneous) magnetic
field. We also comment on the case of a spinor-1 condensate with
anti-ferromagnetic interactions.Comment: 5 figures, an extended version of cond-mat/030117
Atom lasers: production, properties and prospects for precision inertial measurement
We review experimental progress on atom lasers out-coupled from Bose-Einstein
condensates, and consider the properties of such beams in the context of
precision inertial sensing. The atom laser is the matter-wave analog of the
optical laser. Both devices rely on Bose-enhanced scattering to produce a
macroscopically populated trapped mode that is output-coupled to produce an
intense beam. In both cases, the beams often display highly desirable
properties such as low divergence, high spectral flux and a simple spatial mode
that make them useful in practical applications, as well as the potential to
perform measurements at or below the quantum projection noise limit. Both
devices display similar second-order correlations that differ from thermal
sources. Because of these properties, atom lasers are a promising source for
application to precision inertial measurements.Comment: This is a review paper. It contains 40 pages, including references
and figure
Accelerating lattice reduction with FPGAs
International audienceWe describe an FPGA accelerator for the Kannan–Fincke–Pohst enumeration algorithm (KFP) solving the Shortest Lattice Vector Problem (SVP). This is the first FPGA implementation of KFP specifically targeting cryptographically relevant dimensions. In order to optimize this implementation, we theoretically and experimentally study several facets of KFP, including its efficient parallelization and its underlying arithmetic. Our FPGA accelerator can be used for both solving stand-alone instances of SVP (within a hybrid CPU–FPGA compound) or myriads of smaller dimensional SVP instances arising in a BKZ-type algorithm. For devices of comparable costs, our FPGA implementation is faster than a multi-core CPU implementation by a factor around 2.12
Moduli flow and non-supersymmetric AdS attractors
We investigate the attractor mechanism in gauged supergravity in the presence
of higher derivatives terms. In particular, we discuss the attractor behaviour
of static black hole horizons in anti-de Sitter spacetime by using the
effective potential approach as well as Sen's entropy function formalism. We
use the holographic techniques to interpret the moduli flow as an RG flow
towards the IR attractor horizon. We find that the holographic c-function obeys
the expected properties and point out some subtleties in understanding
attractors in AdS.Comment: 41 pages, 3 figures, JHEP style; V2: misprints corrected, expanded
references; V3: few typo's fixed in section
Evaluation of basil extract ( Ocimum basilicum L.) on oxidative, anti-genotoxic and anti-inflammatory effects in human leukocytes cell cultures exposed to challenging agents
ABSTRACT Ocimum is one of the most important genera of the Lamiaceae family. Several studies about basil and its popular use reveal many characteristics of the herb, including its use as antioxidant, anti-aging, anti-inflammatory, anti-carcinogenic, anti-microbial, and cardiovascular agents, among others. In this paper, we evaluated genotoxic, oxidative, and anti-inflammatory parameters from the extract of Ocimum basilicum in different concentrations, using human leukocytes cultures exposed to challenging agents. Our results confirm that the O. basilicum extract acts as an antioxidant and effectively reverts or subjugates the effects of high oxidizing agents such as hydrogen peroxide. These actions are attributed to its composition, which is rich in polyphenols and flavonoids as well as compounds such as rosmarinic acid, all of which have well-known antioxidant activity. We also show that our basil extract presents anti-inflammatory properties, the mechanism of which is a composed interaction between the inhibition of pro-inflammatory mediator and the stimulation of anti-inflammatory cytokines. Although pharmacodynamics studies are necessary to evaluate the activities in vivo, our results demonstrated that basil could act as an antioxidant and anti-inflammatory and a possible alternative for medicinal treatment
Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference
The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18
7 10 124 ) or temporal stage (p = 3.96
7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine
- …