508 research outputs found
A quark model analysis of the charge symmetry breaking in nuclear force
In order to investigate the charge symmetry breaking (CSB) in the short range
part of the nuclear force, we calculate the difference of the masses of the
neutron and the proton, , the difference of the scattering
lengths of the p-p and n-n scatterings, , and the difference of the
analyzing power of the proton and the neutron in the n-p scattering, , by a quark model. In the present model the sources of CSB are the
mass difference of the up and down quarks and the electromagnetic interaction.
We investigate how much each of them contributes to , and . It is found that the contribution of CSB of the
short range part in the nuclear force is large enough to explain the observed
, while is rather underestimated.Comment: 26 pages,6 figure
Rho-Omega Mixing via QCD Sum Rules with Finite Mesonic Widths
Based on the analysis of both Borel and Finite-Energy QCD sum rules, the
inclusion of finite mesonic widths leads to a dramatic effect on the
predictions for the momentum dependence of the rho-omega mixing matrix element.
It is shown that the rho-omega mixing matrix element traditionally discussed in
the literature, has the same sign and similar magnitude in the space-like
region as its on-shell value. This contrasts the zero-width result where the
mixing matrix element is typically of opposite sign in the space-like region.Comment: 10 pages. Revised manuscript accepted for publication. This and
related papers may also be obtained from
http://www.phys.washington.edu/~derek/Publications.htm
Isospin-Violating Meson-Nucleon Vertices as an Alternate Mechanism of Charge-Symmetry Breaking
We compute isospin-violating meson-nucleon coupling constants and their
consequent charge-symmetry-breaking nucleon-nucleon potentials. The couplings
result from evaluating matrix elements of quark currents between nucleon states
in a nonrelativistic constituent quark model; the isospin violations arise from
the difference in the up and down constituent quark masses. We find, in
particular, that isospin violation in the omega-meson--nucleon vertex dominates
the class IV CSB potential obtained from these considerations. We evaluate the
resulting spin-singlet--triplet mixing angles, the quantities germane to the
difference of neutron and proton analyzing powers measured in elastic
scattering, and find them commensurate to those computed
originally using the on-shell value of the - mixing amplitude.
The use of the on-shell - mixing amplitude at has been
called into question; rather, the amplitude is zero in a wide class of models.
Our model possesses no contribution from - mixing at , and
we find that omega-meson exchange suffices to explain the measured
analyzing power difference~at~183 MeV.Comment: 20 pages, revtex, 3 uuencoded PostScript figure
Time consistent discounting
A possibly immortal agent tries to maximise its summed discounted rewards over time, where discounting is used to avoid infinite utilities and encourage the agent to value current rewards more than future ones. Some commonly used discount functions lead to time-inconsistent behavior where the agent changes its plan over time. These inconsistencies can lead to very poor behavior. We generalise the usual discounted utility model to one where the discount function changes with the age of the agent. We then give a simple characterisation of time-(in)consistent discount functions and show the existence of a rational policy for an agent that knows its discount function is time-inconsistent
Extracting Br(omega->pi^+ pi^-) from the Time-like Pion Form-factor
We extract the G-parity-violating branching ratio Br(omega->pi^+ pi^-) from
the effective rho-omega mixing matrix element Pi_{rho omega}(s), determined
from e^+e^- -> pi^+ pi^- data. The omega->pi^+ pi^- partial width can be
determined either from the time-like pion form factor or through the constraint
that the mixed physical propagator D_{rho omega}^{mu nu}(s) possesses no poles.
The two procedures are inequivalent in practice, and we show why the first is
preferred, to find finally Br(omega->pi^+ pi^-) = 1.9 +/- 0.3%.Comment: 12 pages (published version
Radio Observations of the January 20, 2005 X-Class Event
We present a multi-frequency and multi-instrument study of the 20 January
2005 event. We focus mainly on the complex radio signatures and their
association with the active phenomena taking place: flares, CMEs, particle
acceleration and magnetic restructuring. As a variety of energetic particle
accelerators and sources of radio bursts are present, in the flare-ejecta
combination, we investigate their relative importance in the progress of this
event. The dynamic spectra of {Artemis-IV-Wind/Waves-Hiras with 2000 MHz-20 kHz
frequency coverage, were used to track the evolution of the event from the low
corona to the interplanetary space; these were supplemented with SXR, HXR and
gamma-ray recordings. The observations were compared with the expected radio
signatures and energetic-particle populations envisaged by the {Standard
Flare--CME model and the reconnection outflow termination shock model. A proper
combination of these mechanisms seems to provide an adequate model for the
interpretation of the observational data.Comment: Accepted for publication in Solar Physic
Superconducting zero temperature phase transition in two dimensions and in the magnetic field
We derive the Ginzburg-Landau-Wilson theory for the superconducting phase
transition in two dimensions and in the magnetic field. Without disorder the
theory describes a fluctuation induced first-order quantum phase transition
into the Abrikosov lattice. We propose a phenomenological criterion for
determining the transition field and discuss the qualitative effects of
disorder. Comparison with recent experiments on MoGe films is discussed.Comment: 7 pages, 2 figure
Striped antiferromagnetic order and electronic properties of stoichiometric LiFeAs from first-principles calculations
We investigate the structural, electronic, and magnetic properties of
stoichiometric LiFeAs by using state-of-the-arts first-principles method. We
find the magnetic ground-state by comparing the total energies among all the
possible magnetic orders. Our calculated internal positions of Li and As are in
good agreement with experiment. Our results show that stoichiometric LiFeAs has
almost the same striped antiferromagnetic spin order as other FeAs-based parent
compounds and tetragonal FeSe do, and the experimental fact that no magnetic
phase transition has been observed at finite temperature is attributed to the
tiny inter-layer spin coupling
Improved Effective Potential in Curved Spacetime and Quantum Matter - Higher Derivative Gravity Theory
\noindent{\large\bf Abstract.} We develop a general formalism to study the
renormalization group (RG) improved effective potential for renormalizable
gauge theories ---including matter--gravity--- in curved spacetime. The
result is given up to quadratic terms in curvature, and one-loop effective
potentials may be easiliy obtained from it. As an example, we consider scalar
QED, where dimensional transmutation in curved space and the phase structure of
the potential (in particular, curvature-induced phase trnasitions), are
discussed. For scalar QED with higher-derivative quantum gravity (QG), we
examine the influence of QG on dimensional transmutation and calculate QG
corrections to the scalar-to-vector mass ratio. The phase structure of the
RG-improved effective potential is also studied in this case, and the values of
the induced Newton and cosmological coupling constants at the critical point
are estimated. Stability of the running scalar coupling in the Yukawa theory
with conformally invariant higher-derivative QG, and in the Standard Model with
the same addition, is numerically analyzed. We show that, in these models, QG
tends to make the scalar sector less unstable.Comment: 23 pages, Oct 17 199
- …