14 research outputs found

    Marine Litter as Habitat and Dispersal Vector

    Get PDF
    Floating anthropogenic litter provides habitat for a diverse community of marine organisms. A total of 387 taxa, including pro- and eukaryotic micro-organisms, seaweeds and invertebrates, have been found rafting on floating litter in all major oceanic regions. Among the invertebrates, species of bryozoans, crustaceans, molluscs and cnidarians are most frequently reported as rafters on marine litter. Microorganisms are also ubiquitous on marine litter although the composition of the microbial community seems to depend on specific substratum characteristics such as the polymer type of floating plastic items. Sessile suspension feeders are particularly well-adapted to the limited autochthonous food resources on artificial floating substrata and an extended planktonic larval development seems to facilitate colonization of floating litter at sea. Properties of floating litter, such as size and surface rugosity, are crucial for colonization by marine organisms and the subsequent succession of the rafting community. The rafters themselves affect substratum characteristics such as floating stability, buoyancy, and degradation. Under the influence of currents and winds marine litter can transport associated organisms over extensive distances. Because of the great persistence (especially of plastics) and the vast quantities of litter in the world’s oceans, rafting dispersal has become more prevalent in the marine environment, potentially facilitating the spread of invasive species

    Impact of GODAE products on nested HYCOM simulations of the West Florida Shelf

    Full text link
    Nested non-assimilative simulations of the West Florida Shelf for 2004-2005 are used to quantify the impact of initial and boundary conditions provided by Global Ocean Data Assimilation Experiment ocean products. Simulations are nested within an optimum interpolation hindcast of the Atlantic Ocean, the initial test of the US Navy Coupled Ocean Data Assimilation system for the Gulf of Mexico, and a global ocean hindcast that used the latter assimilation system. These simulations are compared to one that is nested in a non-assimilative Gulf of Mexico model to document the importance of assimilation in the outer model. Simulations are evaluated by comparing model results to moored Acoustic Doppler Current Profiler measurements and moored sea surface temperature time series. The choice of outer model has little influence on simulated velocity fluctuations over the inner and middle shelf where fluctuations are dominated by the deterministic wind-driven response. Improvement is documented in the representation of alongshore flow variability over the outer shelf, driven in part by the intrusion of the Loop Current and associated cyclones at the shelf edge near the Dry Tortugas. This improvement was realized in the simulation nested in the global ocean hindcast, the only outer model choice that contained a realistic representation of Loop Current transport associated with basin-scale wind-driven gyre circulation and the Atlantic Meridional Overturning Circulation. For temperature, the non-assimilative outer model had a cold bias in the upper ocean that was substantially corrected in the data-assimilative outer models, leading to improved temperature representation in the simulations nested in the assimilative outer models
    corecore