32 research outputs found

    Synthesis and characterization of TiO2-incorporated silica foams

    No full text
    Titania-incorporated silica (TiO2–SiO2) porous materials have great applications in diverse areas. In this work, TiO2–SiO2 porous materials with tunable Si/Ti molar ratio (R) have been successfully prepared through a one-pot method under a near-neutral condition. With decreasing Si/Ti R, a phase transition from a macroporous foam-like structure to mesostructure is observed. The resultant TiO2–SiO2 porous materials possess large surface areas and high pore volumes. In addition, the titania species are homogenously dispersed in silica matrix when Si/Ti R ≥ 10. Our contribution provides a convenient method to synthesize TiO2/SiO2 porous materials with very large pore size, high pore volume, and relatively high titania content well dispersed in the silica wall framework

    Stable platinum nanoclusters on genomic DNA-graphene oxide with a high oxygen reduction reaction activity

    Get PDF
    Nanosize platinum clusters with small diameters of 2-4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ???1.4 nm) deposited on genomic double-stranded DNA-graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA-graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA-graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries.close9
    corecore