3 research outputs found
Double Parton Scattering Singularity in One-Loop Integrals
We present a detailed study of the double parton scattering (DPS)
singularity, which is a specific type of Landau singularity that can occur in
certain one-loop graphs in theories with massless particles. A simple formula
for the DPS singular part of a four-point diagram with arbitrary
internal/external particles is derived in terms of the transverse momentum
integral of a product of light cone wavefunctions with tree-level matrix
elements. This is used to reproduce and explain some results for DPS
singularities in box integrals that have been obtained using traditional loop
integration techniques. The formula can be straightforwardly generalised to
calculate the DPS singularity in loops with an arbitrary number of external
particles. We use the generalised version to explain why the specific MHV and
NMHV six-photon amplitudes often studied by the NLO multileg community are not
divergent at the DPS singular point, and point out that whilst all NMHV
amplitudes are always finite, certain MHV amplitudes do contain a DPS
divergence. It is shown that our framework for calculating DPS divergences in
loop diagrams is entirely consistent with the `two-parton GPD' framework of
Diehl and Schafer for calculating proton-proton DPS cross sections, but is
inconsistent with the `double PDF' framework of Snigirev.Comment: 29 pages, 8 figures. Minor corrections and clarifications added.
Version accepted for publication in JHE
Multiple Parton Interactions in Z+jets production at the LHC. A comparison of factorized and non--factorized double parton distribution functions
We examine the contribution of Multiple Parton Interactions to Z+n-jets
production at the LHC, n=2,3,4, where the Z boson is assumed to decay
leptonically. We compare the results obtained with the correlated GS09 double
parton distribution function with those obtained with two instances of fully
factorized single parton distribution functions: MSTW2008LO and CTEQ6LO. It
appears quite feasible to measure the MPI contribution to Z+2/3/4 jets already
in the first phase of the LHC with a total luminosity of one inverse femtobarn
at 7 TeV. If as expected the trigger threshold for single photons is around 80
GeV, Z+2-jets production may well turn out to be more easily observable than
the gamma+3-jets channel. The MPI cross section is dominated by relatively soft
events with two jets balancing in transverse momentum.Comment: 15 pages, 3 plot