18 research outputs found

    Bioclimatic rehabilitation of an open market place by a computational fluid dynamics simulation assessment

    Get PDF
    These days urban design of open spaces is strongly related to bioclimatic techniques and practices. It is here presented the procedure of a bioclimatic study by the use of simulation tools. The area of an open market place is characterized of decreased human thermal comfort conditions during summer time. The employment of computational fluid dynamics has contributed in the understanding of what interventions should be made at the open space in order to succeed the defined thermal related targets. Table of the proposed rehabilitation explains what the interventions would contribute in the improvement of the local environment.The authors greatly acknowledge the support of the Mayor of Eordaia Mrs Paraskevi Vrizidou during all simulation stages. ANSYS-CFD simulations were carried out in the framework of student instruction and demonstration of the Department of Environmental Engineering, Democritus University of Thrace in Greece

    Recording behaviour of indoor-housed farm animals automatically using machine vision technology: a systematic review

    Get PDF
    Large-scale phenotyping of animal behaviour traits is time consuming and has led to increased demand for technologies that can automate these procedures. Automated tracking of animals has been successful in controlled laboratory settings, but recording from animals in large groups in highly variable farm settings presents challenges. The aim of this review is to provide a systematic overview of the advances that have occurred in automated, high throughput image detection of farm animal behavioural traits with welfare and production implications. Peer-reviewed publications written in English were reviewed systematically following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. After identification, screening, and assessment for eligibility, 108 publications met these specifications and were included for qualitative synthesis. Data collected from the papers included camera specifications, housing conditions, group size, algorithm details, procedures, and results. Most studies utilized standard digital colour video cameras for data collection, with increasing use of 3D cameras in papers published after 2013. Papers including pigs (across production stages) were the most common (n = 63). The most common behaviours recorded included activity level, area occupancy, aggression, gait scores, resource use, and posture. Our review revealed many overlaps in methods applied to analysing behaviour, and most studies started from scratch instead of building upon previous work. Training and validation sample sizes were generally small (mean±s.d. groups = 3.8±5.8) and in data collection and testing took place in relatively controlled environments. To advance our ability to automatically phenotype behaviour, future research should build upon existing knowledge and validate technology under commercial settings and publications should explicitly describe recording conditions in detail to allow studies to be reproduced

    A computational methodology for effective bioclimatic-design applications in the urban environment

    No full text
    In the present paper a computational methodology for assessing and improving the microclimate in the urban environment is developed. A Computational Fluid Dynamics (CFD) model is described, which accounts for the evaporation occurring on water surfaces as well as the evapotranspiration from plant surfaces and tree foliage. Solar radiation and wind effects are also taken into account. Additionally, thermal comfort indices are implemented in the model, hence local information is provided regarding thermal sensations (bioclimatic maps). Surface temperature and air temperature at pedestrian level, are also used to characterize the microclimate. The methodology is demonstrated by means of a case study, which refers to the area of Gazi in Greece. Initially, the model is applied for simulating the airflow pattern throughout the domain of interest. The numerical results reveal the problematic areas in terms of thermal discomfort and wind effects. Based on that information advanced bioclimatic techniques are suggested to reduce severe heat stresses and to eliminate these areas. The effectiveness of the architectural interventions is tested by estimating the microclimate-indices differences compared to the existing conditions. It is concluded that the proposed methodology serves adequately for applying effective bioclimatic strategies to mitigate the Urban Heat Island (UHI) effect
    corecore