315 research outputs found

    On the Mechanism of Action of SJ-172550 in Inhibiting the Interaction of MDM4 and p53

    Get PDF
    SJ-172550 (1) was previously discovered in a biochemical high throughput screen for inhibitors of the interaction of MDMX and p53 and characterized as a reversible inhibitor (J. Biol. Chem. 2010; 285∶10786). Further study of the biochemical mode of action of 1 has shown that it acts through a complicated mechanism in which the compound forms a covalent but reversible complex with MDMX and locks MDMX into a conformation that is unable to bind p53. The relative stability of this complex is influenced by many factors including the reducing potential of the media, the presence of aggregates, and other factors that influence the conformational stability of the protein. This complex mechanism of action hinders the further development of compound 1 as a selective MDMX inhibitor

    Comparative kinome analysis to identify putative colon tumor biomarkers

    Get PDF
    Kinase domains are the type of protein domain most commonly found in genes associated with tumorigenesis. Because of this, the human kinome (the protein kinase component of the genome) represents a promising source of cancer biomarkers and potential targets for novel anti-cancer therapies. Alterations in the human colon kinome during the progression from normal colon (NC) through adenoma (AD) to adenocarcinoma (AC) were investigated using integrated transcriptomic and proteomic datasets. Two hundred thirty kinase genes and 42 kinase proteins showed differential expression patterns (fold change ≄ 1.5) in at least one tissue pair-wise comparison (AD vs. NC, AC vs. NC, and/or AC vs. AD). Kinases that exhibited similar trends in expression at both the mRNA and protein levels were further analyzed in individual samples of NC (n = 20), AD (n = 39), and AC (n = 24) by quantitative reverse transcriptase PCR. Individual samples of NC and tumor tissue were distinguishable based on the mRNA levels of a set of 20 kinases. Altered expression of several of these kinases, including chaperone activity of bc1 complex-like (CABC1) kinase, bromodomain adjacent to zinc finger domain protein 1B (BAZ1B) kinase, calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D), serine/threonine-protein kinase 24 (STK24), vaccinia-related kinase 3 (VRK3), and TAO kinase 3 (TAOK3), has not been previously reported in tumor tissue. These findings may have diagnostic potential and may lead to the development of novel targeted therapeutic interventions for colorectal cancer

    Interventional radiography and mortality risks in U.S. radiologic technologists

    Get PDF
    With the exponential increase in minimally invasive fluoroscopically guided interventional radiologic procedures, concern has increased about the health effects on staff and patients of radiation exposure from these procedures. There has been no systematic epidemiologic investigation to quantify serious disease risks or mortality. To quantify all-cause, circulatory system disease and cancer mortality risks in U.S. radiologic technologists who work with interventional radiographic procedures, we evaluated mortality risks in a nationwide cohort of 88,766 U.S. radiologic technologists (77% female) who completed a self-administered questionnaire during 1994–998 and were followed through 31 December 2003. We obtained information on work experience, types of procedures (including fluoroscopically guided interventional procedures), and protective measures plus medical, family cancer history, lifestyle, and reproductive information. Cox proportional hazards regression models were used to compute relative risks (RRs) with 95% confidence intervals (CIs). Between completion of the questionnaire and the end of follow-up, there were 3,581 deaths, including 1,209 from malignancies and 979 from circulatory system diseases. Compared to radiologic technologists who never or rarely performed or assisted with fluoroscopically guided interventional procedures, all-cause mortality risks were not increased among those working on such procedures daily. Similarly, there was no increased risk of mortality resulting from all circulatory system diseases combined, all cancers combined, or female breast cancer among technologists who daily performed or assisted with fluoroscopically guided interventional procedures. Based on small numbers of deaths (n=151), there were non-significant excesses (40%–0%) in mortality from cerebrovascular disease among technologists ever working with these procedures. The absence of significantly elevated mortality risks in radiologic technologists reporting the highest frequency of interventional radiography procedures must be interpreted cautiously in light of the small number of deaths during the relatively short follow-up. The present study cannot rule out increased risks of cerebrovascular disease, specific cancers, and diseases with low case-fatality rates or a long latency period preceding death

    Flexibility of a Eukaryotic Lipidome – Insights from Yeast Lipidomics

    Get PDF
    Mass spectrometry-based shotgun lipidomics has enabled the quantitative and comprehensive assessment of cellular lipid compositions. The yeast Saccharomyces cerevisiae has proven to be a particularly valuable experimental system for studying lipid-related cellular processes. Here, by applying our shotgun lipidomics platform, we investigated the influence of a variety of commonly used growth conditions on the yeast lipidome, including glycerophospholipids, triglycerides, ergosterol as well as complex sphingolipids. This extensive dataset allowed for a quantitative description of the intrinsic flexibility of a eukaryotic lipidome, thereby providing new insights into the adjustments of lipid biosynthetic pathways. In addition, we established a baseline for future lipidomic experiments in yeast. Finally, flexibility of lipidomic features is proposed as a new parameter for the description of the physiological state of an organism

    Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches

    Get PDF
    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to −1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling (“finite size” effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to −1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex

    The role of chemotherapeutic drugs in the evaluation of breast tumour response to chemotherapy using serial FDG-PET

    Get PDF
    INTRODUCTION: The aims of this study were to investigate whether drug sequence (docetaxel followed by anthracyclines or the drugs in reverse order) affects changes in the maximal standard uptake volume (SUVmax) on [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) during neoadjuvant chemotherapy in women with locally advanced breast cancer. METHODS: Women were randomly assigned to receive either drug sequence, and FDG-PET scans were taken at baseline, after four cycles and after eight cycles of chemotherapy. Tumour response to chemotherapy was evaluated based on histology from a surgical specimen collected upon completion of chemotherapy. RESULTS: Sixty women were enrolled into the study. Thirty-one received docetaxel followed by anthracyclines (Arm A) and 29 received drugs in the reverse order (Arm B). Most women (83%) had ductal carcinoma and 10 women (17%) had lobular or lobular/ductal carcinoma. All but one tumour were downstaged during therapy. Overall, there was no significant difference in response between the two drug regimens. However, women in Arm B who achieved complete pathological response had mean FDG-PET SUVmax reduction of 87.7% after four cycles, in contrast to those who had no or minor pathological response. These women recorded mean SUVmax reductions of only 27% (P < 0.01). Women in Arm A showed no significant difference in SUVmax response according to pathological response. Sensitivity, specificity, accuracy and positive and negative predictive values were highest in women in Arm B. CONCLUSIONS: Our results show that SUVmax uptake by breast tumours during chemotherapy can be dependent on the drugs used. Care must be taken when interpreting FDG-PET in settings where patients receive varied drug protocols

    Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence

    Get PDF
    Spirochete Treponema pallidum ssp. pertenue (TPE) is the causative agent of yaws while strains of Treponema pallidum ssp. pallidum (TPA) cause syphilis. Both yaws and syphilis are distinguished on the basis of epidemiological characteristics and clinical symptoms. Neither treponeme can reproduce outside the host organism, which precludes the use of standard molecular biology techniques used to study cultivable pathogens. In this study, we determined high quality whole genome sequences of TPE strains and compared them to known genetic information for T. pallidum ssp. pallidum strains. The genome structure was identical in all three TPE strains and also between TPA and TPE strains. The TPE genome length ranged between 1,139,330 bp and 1,139,744 bp. The overall sequence identity between TPA and TPE genomes was 99.8%, indicating that the two pathogens are extremely closely related. A set of 34 TPE genes (3.5%) encoded proteins containing six or more amino acid replacements or other major sequence changes. These genes more often belonged to the group of genes with predicted virulence and unknown functions suggesting their involvement in infection differences between yaws and syphilis

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore