11 research outputs found

    HIV Restriction by APOBEC3 in Humanized Mice

    Get PDF
    Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV), Hepatitis B virus (HBV), Human Papilloma virus (HPV), and Human T Cell Leukemia virus (HTLV). The best characterized members of this family are APOBEC3G (A3G) and APOBEC3F (A3F) and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif). Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif

    Surveillance programs for detection and characterization of emergent pathogens and antimicrobial resistance: results from the Division of Infectious Diseases, UNIFESP

    Full text link

    Chromatographic Methods of Analysis for the Determination of PAHs in Environmental Samples

    No full text

    Sample preparation for peptides and proteins in biological matrices prior to liquid chromatography and capillary zone electrophoresis

    No full text
    The determination of peptides and proteins in a biological matrix normally includes a sample-preparation step to obtain a sample that can be injected into a separation system in such a way that peptides and proteins of interest can be determined qualitatively and/or quantitatively. This can be a rather challenging, labourious and/or time-consuming process. The extract obtained after sample preparation is further separated using a compatible separation system. Liquid chromatography (LC) is the generally applied technique for this purpose, but capillary zone electrophoresis (CZE) is an alternative, providing fast, versatile and efficient separations. In this review, the recent developments in the combination of sample-preparation procedures with LC and CZE, for the determination of peptides and proteins, will be discussed. Emphasis will be on purification from and determination in complex biological matrices (plasma, cell lysates, etc.) of these compounds and little attention will be paid to the proteomics area. Additional focus will be put on sample-preparation conditions, which can be 'hard' or 'soft', and on selectivity issues. Selectivity issues will be addressed in combination with the used separation technique and a comparison between LC and CZE will be made. © Springer-Verlag 2005
    corecore