950 research outputs found

    Crowdsourcing the corpasome

    Get PDF
    The suffix -ome conveys “comprehensiveness” in some way. The idea of the Corpasome started half-jokingly, acknowledging the efforts to sequence five members of my family. After the unexpected response from many scientists from around the world, it has become clear how useful this approach could be for understanding the genomic information contained in our personal genomics tests

    Programmability of Chemical Reaction Networks

    Get PDF
    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri Nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior

    High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester

    Get PDF
    Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)

    Multi-objective optimization of genome-scale metabolic models: the case of ethanol production

    Get PDF
    Ethanol is among the largest fermentation product used worldwide, accounting for more than 90% of all biofuel produced in the last decade. However current production methods of ethanol are unable to meet the requirements of increasing global demand, because of low yields on glucose sources. In this work, we present an in silico multi-objective optimization and analyses of eight genome-scale metabolic networks for the overproduction of ethanol within the engineered cell. We introduce MOME (multi-objective metabolic engineering) algorithm, that models both gene knockouts and enzymes up and down regulation using the Redirector framework. In a multi-step approach, MOME tackles the multi-objective optimization of biomass and ethanol production in the engineered strain; and performs genetic design and clustering analyses on the optimization results. We find in silico E. coli Pareto optimal strains with a knockout cost of 14 characterized by an ethanol production up to 19.74mmolgDW−1h−1 (+832.88% with respect to wild-type) and biomass production of 0.02h−1 (−98.06% ). The analyses on E. coli highlighted a single knockout strategy producing 16.49mmolgDW−1h−1 (+679.29% ) ethanol, with biomass equals to 0.23h−1 (−77.45% ). We also discuss results obtained by applying MOME to metabolic models of: (i) S. aureus; (ii) S. enterica; (iii) Y. pestis; (iv) S. cerevisiae; (v) C. reinhardtii; (vi) Y. lipolytica. We finally present a set of simulations in which constrains over essential genes and minimum allowable biomass were included. A bound over the maximum allowable biomass was also added, along with other settings representing rich media compositions. In the same conditions the maximum improvement in ethanol production is +195.24%

    Axl and MerTK regulate synovial inflammation and are modulated by IL-6 inhibition in rheumatoid arthritis.

    Get PDF
    The TAM tyrosine kinases, Axl and MerTK, play an important role in rheumatoid arthritis (RA). Here, using a unique synovial tissue bioresource of patients with RA matched for disease stage and treatment exposure, we assessed how Axl and MerTK relate to synovial histopathology and disease activity, and their topographical expression and longitudinal modulation by targeted treatments. We show that in treatment-naive patients, high AXL levels are associated with pauci-immune histology and low disease activity and inversely correlate with the expression levels of pro-inflammatory genes. We define the location of Axl/MerTK in rheumatoid synovium using immunohistochemistry/fluorescence and digital spatial profiling and show that Axl is preferentially expressed in the lining layer. Moreover, its ectodomain, released in the synovial fluid, is associated with synovial histopathology. We also show that Toll-like-receptor 4-stimulated synovial fibroblasts from patients with RA modulate MerTK shedding by macrophages. Lastly, Axl/MerTK synovial expression is influenced by disease stage and therapeutic intervention, notably by IL-6 inhibition. These findings suggest that Axl/MerTK are a dynamic axis modulated by synovial cellular features, disease stage and treatment

    Reducing bias in auditory duration reproduction by integrating the reproduced signal

    Get PDF
    Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability
    corecore