51 research outputs found

    Real-time PCR complements immunohistochemistry in the determination of HER-2/neu status in breast cancer

    Get PDF
    BACKGROUND: The clinical benefit of determining the status of HER-2/neu amplification in breast cancer patients is well accepted. Although immunohistochemistry (IHC) is the most frequently used method to assess the over-expression of HER-2 protein, fluorescent in-situ hybridization (FISH) is recognized as the "gold standard" for the determining of HER-2/neu status. The greatest discordance between the two methods occurs among breast tumors that receive an indeterminate IHC score of 2+. More recently, a real-time polymerase chain reaction (PCR) assay using the LightCycler(® )has been developed for quantifying HER-2/neu gene amplification. In this study, we evaluated the sensitivity and specificity of a commercially available LightCycler assay as it compares to FISH. To determine whether this assay provides an accurate alternative for the determination of HER-2/neu status, we focused primarily on tumors that were deemed indeterminate or borderline status by IHC. METHODS: Thirty-nine breast tumors receiving an IHC score of 2+ were evaluated by both FISH and LightCycler(® )technologies in order to determine whether quantitative real-time PCR provides an accurate alternative for the determination of HER-2/neu status. RESULTS: We found a high concordance (92%) between FISH and real-time PCR results. We also observed that 10% of these tumors were positive for gene amplification by both FISH and real-time PCR. CONCLUSION: The data show that the results obtained for the gene amplification of HER-2/neu by real-time PCR on the LightCycler(® )instrument is comparable to results obtained by FISH. These results therefore suggest that real-time PCR analysis, using the LightCycler(®), is a viable alternative to FISH for reassessing breast tumors which receive an IHC score of 2+, and that a combined IHC and real-time PCR approach for the determination of HER-2 status in breast cancer patients may be an effective and efficient strategy

    Radiation and breast cancer: a review of current evidence

    Get PDF
    This paper summarizes current knowledge on ionizing radiation-associated breast cancer in the context of established breast cancer risk factors, the radiation dose–response relationship, and modifiers of dose response, taking into account epidemiological studies and animal experiments. Available epidemiological data support a linear dose–response relationship down to doses as low as about 100 mSv. However, the magnitude of risk per unit dose depends strongly on when radiation exposure occurs: exposure before the age of 20 years carries the greatest risk. Other characteristics that may influence the magnitude of dose-specific risk include attained age (that is, age at observation for risk), age at first full-term birth, parity, and possibly a history of benign breast disease, exposure to radiation while pregnant, and genetic factors

    Infrared thermography for convective heat transfer measurements

    Get PDF

    Temperature Measurement, Methods

    No full text

    Defect-selective Imaging

    No full text

    Signalling of the Ret receptor tyrosine kinase through the c-Jun N-terminal Protein Kinases (JNKs): evidence for a divergence of the ERKs and JNKs pathways induced by Ret

    No full text
    The RET proto-oncogene encodes a functional receptor tyrosine kinase (Ret) for the Glial cell line Derived Neurotrophic Factor (GDNF). RET is involved in several neoplastic and non-neoplastic human diseases. Oncogenic activation of RET is detected in human papillary thyroid tumours and in multiple endocrine neoplasia type 2 syndromes. Inactivating mutations of RET have been associated to the congenital megacolon, i.e. Hirschprung's disease. In order to identify pathways that are relevant for Ret signalling to the nucleus, we have investigated its ability to induce the c-Jun NH2-terminal protein kinases (JNK). Here we show that triggering the endogenous Ret, expressed in PC12 cells, induces JNK activity; moreover, Ret is able to activate JNK either when transiently transfected in COS-1 cells or when stably expressed in NIH3T3 fibroblasts or in PC Cl 3 epithelial thyroid cells. JNK activation is dependent on the Ret kinase function, as a kinase-deficient RET mutant, associated with Hirschsprung's disease, fails to activate JNK. The pathway leading to the activation of JNK by RET is clearly divergent from that leading to the activation of ERK: substitution of the tyrosine 1062 of Ret, the Shc binding site, for phenylalanine abrogates ERK but not JNK activation. Experiments conducted with dominant negative mutants or with negative regulators demonstrate that JNK activation by Ret is mediated by Rho/Rac related small GTPases and, particularly, by Cdc42
    • …
    corecore