27 research outputs found

    Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypermethylation of the <it>TGFBI </it>promoter has been shown to correlate with decreased expression of this gene in human tumor cell lines. In this study, we optimized a methylation-specific polymerase chain reaction (MSP) method and investigated the methylation status of the <it>TGFBI </it>promoter in human lung and prostate cancer specimens.</p> <p>Methods</p> <p>Methylation-specific primers were designed based on the methylation profiles of the <it>TGFBI </it>promoter in human tumor cell lines, and MSP conditions were optimized for accurate and efficient amplification. Genomic DNA was isolated from lung tumors and prostatectomy tissues of prostate cancer patients, bisulfite-converted, and analyzed by MSP.</p> <p>Results</p> <p>Among 50 lung cancer samples, 44.0% (22/50) harbored methylated CpG sites in the <it>TGFBI </it>promoter. An analysis correlating gene methylation status with clinicopathological cancer features revealed that dense methylation of the <it>TGFBI </it>promoter was associated with a metastatic phenotype, with 42.9% (6/14) of metastatic lung cancer samples demonstrating dense methylation vs. only 5.6% (2/36) of primary lung cancer samples (<it>p </it>< 0.05). Similar to these lung cancer results, 82.0% (41/50) of prostate cancer samples harbored methylated CpG sites in the <it>TGFBI </it>promoter, and dense methylation of the promoter was present in 38.9% (7/18) of prostate cancer samples with the feature of locoregional invasiveness vs. only 19.4% (6/31) of prostate cancer samples without locoregional invasiveness (<it>p </it>< 0.05). Furthermore, promoter hypermethylation correlated with highly reduced expression of the <it>TGFBI </it>gene in human lung and prostate tumor cell lines.</p> <p>Conclusion</p> <p>We successfully optimized a MSP method for the precise and efficient screening of <it>TGFBI </it>promoter methylation status. Dense methylation of the <it>TGFBI </it>promoter correlated with the extent of <it>TGFBI </it>gene silencing in tumor cell lines and was related to invasiveness of prostate tumors and metastatic status of lung cancer tumors. Thus, <it>TGFBI </it>promoter methylation can be used as a potential prognostic marker for invasiveness and metastasis in prostate and lung cancer patients, respectively.</p

    Role of CD

    No full text

    Gene and Protein Expressions Induced by 17β-estradiol and Parathion in Cultured Breast Epithelial Cells

    No full text
    Cancer of the breast is the most common form of malignant disease occurring among women of the western world and environmental substances seem to be involved in the etiology of this disease. Many studies have found an association between human cancer and exposure to agricultural pesticides and among them parathion, the organophosphorous pesticide used in agriculture to control mosquito plagues. The association between breast cancer and prolonged exposure to estrogens suggests that this hormone also may have a role in such process. However, the causative factors for breast carcinogenesis remain an enigma. The objective of this study was to determine the effects of 17β-estradiol (E2) and parathion on cell transformation of human breast epithelial cells in vitro. The results of this study showed that parathion alone and in combination with E2 induced malignant transformation of an immortalized human breast epithelial cell line, MCF-10F, and the malignant feature was confirmed by anchorage independency and invasive capabilities. Parathion alone efficiently elevated the expression of EGFR, c-Kit, Trio, Rac 3, Rho-A, and mutant p53 proteins. Analysis of gene expression using commercially available human cell cycle array revealed transcriptional alterations in 22 out of a total of 96 genes. Among them, nine genes involved in the regulation of cell cycle were altered. These included cyclins (A1, A2, C, G1, G2, and H), cyclin-dependent kinases (CDKs), and minichromosome maintenance deficient (MCM). Results suggest that parathion has the potency to cause malignant transformation of breast epithelial cells through modulation of expression of cell cycle regulated genes

    Neoplastic Transformation of Human Small Airway Epithelial Cells Induced by Arsenic

    No full text
    Human small airway epithelial cells (SAECs) previously immortalized with human telomerase reverse transcriptase (h-TERT) were continuously treated with sodium arsenite at a dose of 0.5 μg/mL in culture for up to 6 months. Arsenic-treated cells progressively displayed an increase in transformed phenotype including enhanced growth saturation density, plating efficiency, and anchorage-independent growth and invasion capability compared with their nontreated control cells. To determine whether arsenic-induced cell transformation was associated with genomic instability, treated and control cells were also analyzed for micronuclei formation. A 4.8-fold increase in micronuclei incidence in arsenic-treated cells was detected in conjunction with increased N-phosphonacetyl-l-aspartate (PALA)-resistant characteristics. In addition, arsenic-treated cells showed an increase in c-H-ras, c-myc, and c-fos protein expression relative to controls. The change in oncoprotein expression correlated with a decrease in wild-type p53 expression and hyperphosphorylated retinoblastoma. Taken together, these results strongly suggest that h-TERT immortalized human small airway epithelial cells underwent step-wise transformation after inorganic arsenic treatment
    corecore